En teoría de números, un número raro es un número natural que es abundante pero no semiperfecto . En otras palabras, la suma de los divisores propios (divisores que incluyen 1 pero no a sí mismo) del número es mayor que el número, pero ningún subconjunto de esos divisores suma al número en sí.
Dado un número N, la tarea es verificar si el número es raro o no.
Ejemplos:
Entrada: 40
Salida: El número no es raro
1+4+5+10+20=40, por lo tanto no es raro.Entrada: 70
Salida: El número es
raro El número raro más pequeño es 70. Sus divisores propios son 1, 2, 5, 7, 10, 14 y 35; estos suman 74, pero ningún subconjunto de estas sumas da 70.
El número 12, por ejemplo, es abundante pero no raro, porque los divisores propios de 12 son 1, 2, 3, 4 y 6, que suman 16; pero 2+4+6 = 12. Los primeros números raros son 70, 836, 4030, 5830, 7192, 7912, 9272, 10430, 10570, 10792, 10990, 11410, 11690, 12110, 12530, 12670, 133510 , …
Enfoque: Comprobar si el número es abundante o no. El enfoque ha sido discutido aquí . Una vez hecha la comprobación, comprueba si el número es semiperfecto o no. El enfoque para verificar números semiperfectos se ha discutido aquí .
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program to check if the // number is weird or not #include <bits/stdc++.h> using namespace std; // code to find all the factors of // the number excluding the number itself vector<int> factors(int n) { // vector to store the factors vector<int> v; v.push_back(1); // note that this loop runs till sqrt(n) for (int i = 2; i <= sqrt(n); i++) { // if the value of i is a factor if (n % i == 0) { v.push_back(i); // condition to check the // divisor is not the number itself if (n / i != i) { v.push_back(n / i); } } } // return the vector return v; } // Function to check if the number // is abundant or not bool checkAbundant(int n) { vector<int> v; int sum = 0; // find the divisors using function v = factors(n); // sum all the factors for (int i = 0; i < v.size(); i++) { sum += v[i]; } // check for abundant or not if (sum > n) return true; else return false; } // Function to check if the // number is semi-perfect or not bool checkSemiPerfect(int n) { vector<int> v; // find the divisors v = factors(n); // sorting the vector sort(v.begin(), v.end()); int r = v.size(); // subset to check if no is semiperfect bool subset[r + 1][n + 1]; // initialising 1st column to true for (int i = 0; i <= r; i++) subset[i][0] = true; // initialing 1st row except zero position to 0 for (int i = 1; i <= n; i++) subset[0][i] = false; // loop to find whether the number is semiperfect for (int i = 1; i <= r; i++) { for (int j = 1; j <= n; j++) { // calculation to check if the // number can be made by summation of divisors if (j < v[i - 1]) subset[i][j] = subset[i - 1][j]; else { subset[i][j] = subset[i - 1][j] || subset[i - 1][j - v[i - 1]]; } } } // if not possible to make the // number by any combination of divisors if ((subset[r][n]) == 0) return false; else return true; } // Function to check for // weird or not bool checkweird(int n) { if (checkAbundant(n) == true && checkSemiPerfect(n) == false) return true; else return false; } // Driver Code int main() { int n = 70; if (checkweird(n)) cout << "Weird Number"; else cout << "Not Weird Number"; return 0; }
Java
// Java program to check if // the number is weird or not import java.util.*; class GFG { // code to find all the // factors of the number // excluding the number itself static ArrayList<Integer> factors(int n) { // ArrayList to store // the factors ArrayList<Integer> v = new ArrayList<Integer>(); v.add(1); // note that this loop // runs till sqrt(n) for (int i = 2; i <= Math.sqrt(n); i++) { // if the value of // i is a factor if (n % i == 0) { v.add(i); // condition to check // the divisor is not // the number itself if (n / i != i) { v.add(n / i); } } } // return the ArrayList return v; } // Function to check if the // number is abundant or not static boolean checkAbundant(int n) { ArrayList<Integer> v; int sum = 0; // find the divisors // using function v = factors(n); // sum all the factors for (int i = 0; i < v.size(); i++) { sum += v.get(i); } // check for abundant // or not if (sum > n) return true; else return false; } // Function to check if the // number is semi-perfect or not static boolean checkSemiPerfect(int n) { ArrayList<Integer> v; // find the divisors v = factors(n); // sorting the ArrayList Collections.sort(v); int r = v.size(); // subset to check if // no is semiperfect boolean subset[][] = new boolean[r + 1][n + 1]; // initialising 1st // column to true for (int i = 0; i <= r; i++) subset[i][0] = true; // initialing 1st row except // zero position to 0 for (int i = 1; i <= n; i++) subset[0][i] = false; // loop to find whether // the number is semiperfect for (int i = 1; i <= r; i++) { for (int j = 1; j <= n; j++) { // calculation to check // if the number can be // made by summation of // divisors if (j < v.get(i - 1)) subset[i][j] = subset[i - 1][j]; else { subset[i][j] = subset[i - 1][j] || subset[i - 1][j - v.get(i - 1)]; } } } // if not possible to make // the number by any // combination of divisors if ((subset[r][n]) == false) return false; else return true; } // Function to check // for weird or not static boolean checkweird(int n) { if (checkAbundant(n) == true && checkSemiPerfect(n) == false) return true; else return false; } // Driver Code public static void main(String args[]) { int n = 70; if (checkweird(n)) System.out.println("Weird Number"); else System.out.println("Not Weird Number"); } } // This code is contributed // by Arnab Kundu
Python3
# Python 3 program to check if the # number is weird or not from math import sqrt # code to find all the factors of # the number excluding the number itself def factors(n): # vector to store the factors v = [] v.append(1) # note that this loop runs till sqrt(n) for i in range(2, int(sqrt(n)) + 1, 1): # if the value of i is a factor if (n % i == 0): v.append(i); # condition to check the # divisor is not the number itself if (int(n / i) != i): v.append(int(n / i)) # return the vector return v # Function to check if the number # is abundant or not def checkAbundant(n): sum = 0 # find the divisors using function v = factors(n) # sum all the factors for i in range(len(v)): sum += v[i] # check for abundant or not if (sum > n): return True else: return False # Function to check if the # number is semi-perfect or not def checkSemiPerfect(n): # find the divisors v = factors(n) # sorting the vector v.sort(reverse = False) r = len(v) # subset to check if no is semiperfect subset = [[0 for i in range(n + 1)] for j in range(r + 1)] # initialising 1st column to true for i in range(r + 1): subset[i][0] = True # initialing 1st row except zero position to 0 for i in range(1, n + 1): subset[0][i] = False # loop to find whether the number is semiperfect for i in range(1, r + 1): for j in range(1, n + 1): # calculation to check if the # number can be made by summation of divisors if (j < v[i - 1]): subset[i][j] = subset[i - 1][j] else: subset[i][j] = (subset[i - 1][j] or subset[i - 1][j - v[i - 1]]) # if not possible to make the # number by any combination of divisors if ((subset[r][n]) == 0): return False else: return True # Function to check for # weird or not def checkweird(n): if (checkAbundant(n) == True and checkSemiPerfect(n) == False): return True else: return False # Driver Code if __name__ == '__main__': n = 70 if (checkweird(n)): print("Weird Number") else: print("Not Weird Number") # This code is contributed by # Surendra_Gangwar
C#
// C# program to check if // the number is weird or not using System; using System.Collections.Generic; class GFG { // code to find all the // factors of the number // excluding the number itself static List<int> factors(int n) { // List to store // the factors List<int> v = new List<int>(); v.Add(1); // note that this loop // runs till sqrt(n) for (int i = 2; i <= Math.Sqrt(n); i++) { // if the value of // i is a factor if (n % i == 0) { v.Add(i); // condition to check // the divisor is not // the number itself if (n / i != i) { v.Add(n / i); } } } // return the List return v; } // Function to check if the // number is abundant or not static Boolean checkAbundant(int n) { List<int> v; int sum = 0; // find the divisors // using function v = factors(n); // sum all the factors for (int i = 0; i < v.Count; i++) { sum += v[i]; } // check for abundant // or not if (sum > n) return true; else return false; } // Function to check if the // number is semi-perfect or not static Boolean checkSemiPerfect(int n) { List<int> v; // find the divisors v = factors(n); // sorting the List v.Sort(); int r = v.Count; // subset to check if // no is semiperfect Boolean [,]subset = new Boolean[r + 1,n + 1]; // initialising 1st // column to true for (int i = 0; i <= r; i++) subset[i,0] = true; // initialing 1st row except // zero position to 0 for (int i = 1; i <= n; i++) subset[0,i] = false; // loop to find whether // the number is semiperfect for (int i = 1; i <= r; i++) { for (int j = 1; j <= n; j++) { // calculation to check // if the number can be // made by summation of // divisors if (j < v[i-1]) subset[i,j] = subset[i - 1,j]; else { subset[i,j] = subset[i - 1,j] || subset[i - 1,j - v[i-1]]; } } } // if not possible to make // the number by any // combination of divisors if ((subset[r,n]) == false) return false; else return true; } // Function to check // for weird or not static Boolean checkweird(int n) { if (checkAbundant(n) == true && checkSemiPerfect(n) == false) return true; else return false; } // Driver Code public static void Main(String []args) { int n = 70; if (checkweird(n)) Console.WriteLine("Weird Number"); else Console.WriteLine("Not Weird Number"); } } // This code is contributed by Princi Singh
Javascript
<script> // Javascript program to check if the // number is weird or not // code to find all the factors of // the number excluding the number itself function factors(n) { // vector to store the factors var v = []; v.push(1); // note that this loop runs till sqrt(n) for (var i = 2; i <= Math.sqrt(n); i++) { // if the value of i is a factor if (n % i == 0) { v.push(i); // condition to check the // divisor is not the number itself if (n / i != i) { v.push(n / i); } } } // return the vector return v; } // Function to check if the number // is abundant or not function checkAbundant(n) { var v = []; var sum = 0; // find the divisors using function v = factors(n); // sum all the factors for (var i = 0; i < v.length; i++) { sum += v[i]; } // check for abundant or not if (sum > n) return true; else return false; } // Function to check if the // number is semi-perfect or not function checkSemiPerfect(n) { var v = []; // find the divisors v = factors(n); // sorting the vector v.sort() var r = v.length; // subset to check if no is semiperfect var subset = Array.from(Array(r+1), ()=>Array(n+1)); // initialising 1st column to true for (var i = 0; i <= r; i++) subset[i][0] = true; // initialing 1st row except zero position to 0 for (var i = 1; i <= n; i++) subset[0][i] = false; // loop to find whether the number is semiperfect for (var i = 1; i <= r; i++) { for (var j = 1; j <= n; j++) { // calculation to check if the // number can be made by summation of divisors if (j < v[i - 1]) subset[i][j] = subset[i - 1][j]; else { subset[i][j] = subset[i - 1][j] || subset[i - 1][j - v[i - 1]]; } } } // if not possible to make the // number by any combination of divisors if ((subset[r][n]) == 0) return false; else return true; } // Function to check for // weird or not function checkweird(n) { if (checkAbundant(n) == true && checkSemiPerfect(n) == false) return true; else return false; } // Driver Code var n = 70; if (checkweird(n)) document.write( "Weird Number"); else document.write( "Not Weird Number"); </script>
Weird Number
Complejidad temporal: O(N * número de factores)
Espacio auxiliar: O(N * número de factores)