Dado un número n, la tarea es encontrar el N-ésimo número heptagonal. Un número heptagonal representa un heptágono y pertenece a un número figurativo. Heptagonal tiene siete ángulos, siete vértices y un polígono de siete lados.
Ejemplos:
Entrada: 2
Salida: 7
Entrada: 15
Salida: 540
Pocos números heptagonales son:
1, 7, 18, 34, 55, 81, 112, 148, 189, 235………..
Una fórmula para calcular el N-ésimo número heptagonal:
C++
// C++ program to find the // nth Heptagonal number #include <iostream> using namespace std; // Function to return Nth Heptagonal // number int heptagonalNumber(int n) { return ((5 * n * n) - (3 * n)) / 2; } // Drivers Code int main() { int n = 2; cout << heptagonalNumber(n) << endl; n = 15; cout << heptagonalNumber(n) << endl; return 0; }
C
// C program to find the // nth Heptagonal number #include <stdio.h> // Function to return Nth Heptagonal // number int heptagonalNumber(int n) { return ((5 * n * n) - (3 * n)) / 2; } // Drivers Code int main() { int n = 2; printf("%d\n",heptagonalNumber(n)); n = 15; printf("%d\n",heptagonalNumber(n)); return 0; } // This code is contributed by kothavvsaakash.
Java
// Java program to find the // nth Heptagonal number import java.io.*; class GFG { // Function to return // Nth Heptagonal number static int heptagonalNumber(int n) { return ((5 * n * n) - (3 * n)) / 2; } // Driver Code public static void main (String[] args) { int n = 2; System.out.println(heptagonalNumber(n)); n = 15; System.out.println(heptagonalNumber(n)); } } // This code is contributed by anuj_67.
Python3
# Program to find nth # Heptagonal number # Function to find # nth Heptagonal number def heptagonalNumber(n) : # Formula to calculate # nth Heptagonal number return ((5 * n * n) - (3 * n)) // 2 # Driver Code if __name__ == '__main__' : n = 2 print(heptagonalNumber(n)) n = 15 print(heptagonalNumber(n)) # This code is contributed # by ajit
C#
// C# program to find the // nth Heptagonal number using System; class GFG { // Function to return // Nth Heptagonal number static int heptagonalNumber(int n) { return ((5 * n * n) - (3 * n)) / 2; } // Driver Code public static void Main () { int n = 2; Console.WriteLine(heptagonalNumber(n)); n = 15; Console.WriteLine(heptagonalNumber(n)); } } // This code is contributed by anuj_67.
PHP
<?php // PHP program to find the // nth Heptagonal number // Function to return Nth // Heptagonal number function heptagonalNumber($n) { return ((5 * $n * $n) - (3 * $n)) / 2; } // Driver Code $n = 2; echo heptagonalNumber($n), "\n"; $n = 15; echo heptagonalNumber($n); // This code is contributed // by anuj_67. ?>
Javascript
<script> // Javascript program to find the // nth Heptagonal number // Function to return Nth Heptagonal // number function heptagonalNumber(n) { return parseInt(((5 * n * n) - (3 * n)) / 2); } // Drivers Code let n = 2; document.write(heptagonalNumber(n) + "<br>"); n = 15; document.write(heptagonalNumber(n) + "<br>"); // This code is contributed by rishavmahato348. </script>
Producción :
7 540
Complejidad Temporal: O(1), ya que no hay bucle ni recursividad.
Espacio Auxiliar: O(1), ya que no se ha ocupado ningún espacio extra.
Referencia: https://en.wikipedia.org/wiki/Heptagonal_number