Dadas las dimensiones de un bloque L, B y H , la tarea es formar un prisma rectangular hueco de longitud A y altura Ht tal que se requiera un número mínimo de bloques.
Ejemplos:
Entrada: L = 40, B = 30, H = 10 y A = 500, Ht = 300
Salida: 500
Entrada: L = 30, B = 20, H = 20 y A = 600, Ht = 240
Salida: 960
Enfoque:
Calcule el número mínimo de bloques requeridos en cada capa, lo que se puede hacer colocando los bloques de tal manera que ocupe la longitud máxima al encontrar el número de bloques requeridos para los 4 lados del prisma rectangular, luego elija para el bloque lado que se puede tomar como la altura del bloque. Del ancho o del alto se toma como alto el que sea mayor.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ Implementation to find the minimum // no of blocks required to form // hollow rectangular prism #include <bits/stdc++.h> using namespace std; // Function to display output void disp(int row_no, int block) { cout << row_no * block; } // Function to return minimum no of layers // required to form the hollow prism int row(int ht, int h) { return ht / h; } // Function to calculate no of blocks // required for each layer void calculate(int l, int w, int h, int a, int ht) { // No of blocks required for each row int no_block = (4 * a) / l; int row_no; // Check for no of layers is minimum if (h < w) row_no = row(ht, w); else row_no = row(ht, h); disp(row_no, no_block); } // Driver function int main() { // Length, width, height of each block int l = 50, w = 20, h = 35; // Side of one wall int a = 700; // height of each wall int ht = 140; calculate(l, w, h, a, ht); return 0; }
Java
// Java Implementation to find the minimum // no of blocks required to form // hollow rectangular prism import java.util.*; class GFG{ // Function to display output static void disp(int row_no, int block) { System.out.print(row_no * block); } // Function to return minimum no of layers // required to form the hollow prism static int row(int ht, int h) { return ht / h; } // Function to calculate no of blocks // required for each layer static void calculate(int l, int w, int h, int a, int ht) { // No of blocks required for each row int no_block = (4 * a) / l; int row_no; // Check for no of layers is minimum if (h < w) row_no = row(ht, w); else row_no = row(ht, h); disp(row_no, no_block); } // Driver function public static void main(String[] args) { // Length, width, height of each block int l = 50, w = 20, h = 35; // Side of one wall int a = 700; // height of each wall int ht = 140; calculate(l, w, h, a, ht); } } // This code is contributed by PrinciRaj1992
Python 3
# Python 3 Implementation to find the minimum # no of blocks required to form # hollow rectangular prism # Function to display output def disp(row_no,block): print(row_no * block) # Function to return minimum no of layers # required to form the hollow prism def row(ht, h): return ht // h # Function to calculate no of blocks # required for each layer def calculate(l, w, h, a, ht): # No of blocks required for each row no_block = (4 * a) // l # Check for no of layers is minimum if (h < w): row_no = row(ht, w) else: row_no = row(ht, h) disp(row_no, no_block) # Driver function if __name__ == '__main__': # Length, width, height of each block l = 50 w = 20 h = 35 # Side of one wall a = 700 # height of each wall ht = 140 calculate(l, w, h, a, ht) # This code is contributed by Surendra_Gangwar
C#
// C# Implementation to find the minimum // no of blocks required to form // hollow rectangular prism using System; class GFG{ // Function to display output static void disp(int row_no, int block) { Console.Write(row_no * block); } // Function to return minimum no of layers // required to form the hollow prism static int row(int ht, int h) { return ht / h; } // Function to calculate no of blocks // required for each layer static void calculate(int l, int w, int h, int a, int ht) { // No of blocks required for each row int no_block = (4 * a) / l; int row_no; // Check for no of layers is minimum if (h < w) row_no = row(ht, w); else row_no = row(ht, h); disp(row_no, no_block); } // Driver function public static void Main(String[] args) { // Length, width, height of each block int l = 50, w = 20, h = 35; // Side of one wall int a = 700; // height of each wall int ht = 140; calculate(l, w, h, a, ht); } } // This code is contributed by PrinciRaj1992
Javascript
<script> // javascript Implementation to find the minimum // no of blocks required to form // hollow rectangular prism // Function to display output function disp( row_no, block) { document.write( row_no * block); } // Function to return minimum no of layers // required to form the hollow prism function row( ht, h) { return ht / h; } // Function to calculate no of blocks // required for each layer function calculate( l, w, h, a, ht) { // No of blocks required for each row let no_block = (4 * a) / l; let row_no; // Check for no of layers is minimum if (h < w) row_no = row(ht, w); else row_no = row(ht, h); disp(row_no, no_block); } // Driver function // Length, width, height of each block let l = 50, w = 20, h = 35; // Side of one wall let a = 700; // height of each wall let ht = 140; calculate(l, w, h, a, ht); // This code is contributed by Rajput-Ji </script>
224