Número total de triángulos formados cuando hay H líneas horizontales y V verticales

Dado un triángulo ABC . Se dibujan H líneas horizontales desde el lado AB hasta AC (como se muestra en la fig.) y V líneas verticales desde el vértice A hasta el lado BC , la tarea es encontrar el número total. de triángulos formados.
Ejemplos: 
 

Entrada: H = 2, V = 2 
Salida: 18 
 

Como vemos en la imagen de arriba, el total de triángulos formados es 18.
Entrada: H = 3, V = 4 
Salida: 60 
 

 

Enfoque: Como vemos en las imágenes a continuación, podemos derivar una fórmula general para el problema anterior: 
 

  1. Si solo hay h líneas horizontales, entonces el total de triángulos es (h + 1) .
  2. Si solo hay v líneas verticales, entonces los triángulos totales son (v + 1) * (v + 2) / 2.
     

  1. Entonces, los triángulos totales son Triángulos formados por líneas horizontales * Triángulos formados por líneas verticales, es decir (h + 1) * (( v + 1) * (v + 2) / 2) .

A continuación se muestra la implementación del enfoque anterior:
 

C++

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
#define LLI long long int
 
// Function to return total triangles
LLI totalTriangles(LLI h, LLI v)
{
    // Only possible triangle is
    // the given triangle
    if (h == 0 && v == 0)
        return 1;
 
    // If only vertical lines are present
    if (h == 0)
        return ((v + 1) * (v + 2) / 2);
 
    // If only horizontal lines are present
    if (v == 0)
        return (h + 1);
 
    // Return total triangles
    LLI Total = (h + 1) * ((v + 1) * (v + 2) / 2);
 
    return Total;
}
 
// Driver code
int main()
{
    int h = 2, v = 2;
    cout << totalTriangles(h, v);
 
    return 0;
}

Java

// Java implementation of the approach
class GFG {
 
    // Function to return total triangles
    public static int totalTriangles(int h, int v)
    {
        // Only possible triangle is
        // the given triangle
        if (h == 0 && v == 0)
            return 1;
 
        // If only vertical lines are present
        if (h == 0)
            return ((v + 1) * (v + 2) / 2);
 
        // If only horizontal lines are present
        if (v == 0)
            return (h + 1);
 
        // Return total triangles
        int total = (h + 1) * ((v + 1) * (v + 2) / 2);
 
        return total;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int h = 2, v = 2;
        System.out.print(totalTriangles(h, v));
    }
}

C#

// C# implementation of the approach
using System;
 
class GFG
{
 
    // Function to return total triangles
    public static int totalTriangles(int h, int v)
    {
        // Only possible triangle is
        // the given triangle
        if (h == 0 && v == 0)
            return 1;
 
        // If only vertical lines are present
        if (h == 0)
            return ((v + 1) * (v + 2) / 2);
 
        // If only horizontal lines are present
        if (v == 0)
            return (h + 1);
 
        // Return total triangles
        int total = (h + 1) * ((v + 1) * (v + 2) / 2);
 
        return total;
    }
 
    // Driver code
    public static void Main()
    {
        int h = 2, v = 2;
        Console.Write(totalTriangles(h, v));
    }
}
 
// This code is contributed by Ryuga

Python3

# Python3 implementation of the approach
 
# Function to return total triangles
def totalTriangles(h, v):
     
    # Only possible triangle is
    # the given triangle
    if (h == 0 and v == 0):
        return 1
 
    # If only vertical lines are present
    if (h == 0):
        return ((v + 1) * (v + 2) / 2)
 
    # If only horizontal lines are present
    if (v == 0):
        return (h + 1)
 
    # Return total triangles
    total = (h + 1) * ((v + 1) * (v + 2) / 2)
 
    return total
 
# Driver code
h = 2
v = 2
print(int(totalTriangles(h, v)))

PHP

<?php
// PHP implementation of the above approach
 
// Function to return total triangles
function totalTriangles($h, $v)
{
    // Only possible triangle is
    // the given triangle
    if ($h == 0 && $v == 0)
        return 1;
 
    // If only vertical lines are present
    if ($h == 0)
        return (($v + 1) * ($v + 2) / 2);
 
    // If only horizontal lines are present
    if ($v == 0)
        return ($h + 1);
 
    // Return total triangles
    $Total = ($h + 1) * (($v + 1) *
                         ($v + 2) / 2);
 
    return $Total;
}
 
// Driver code
$h = 2;
$v = 2;
echo totalTriangles($h, $v);
 
// This code is contributed by Arnab Kundu
?>

Javascript

<script>
 
// javascript implementation of the approach  
// Function to return total triangles
 
function totalTriangles(h , v)
{
    // Only possible triangle is
    // the given triangle
    if (h == 0 && v == 0)
        return 1;
 
    // If only vertical lines are present
    if (h == 0)
        return ((v + 1) * (v + 2) / 2);
 
    // If only horizontal lines are present
    if (v == 0)
        return (h + 1);
 
    // Return total triangles
    var total = (h + 1) * ((v + 1) * (v + 2) / 2);
 
    return total;
}
 
// Driver code
var h = 2, v = 2;
document.write(totalTriangles(h, v));
 
// This code contributed by shikhasingrajput
 
</script>
Producción: 

18

 

Tiempo Complejidad: O(1) 
Espacio Auxiliar: O(1)
 

Publicación traducida automáticamente

Artículo escrito por Chandan_Agrawal y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *