Números primos mínimos y máximos de una lista enlazada individualmente

Dada una lista enlazada individualmente que contiene N Nodes, la tarea es encontrar el número primo mínimo y máximo.
Ejemplos: 
 

Input : List = 15 -> 16 -> 6 -> 7 -> 17
Output : Minimum : 7
         Maximum : 17

Input : List = 15 -> 3 -> 4 -> 2 -> 9
Output : Minimum : 2
         Maximum : 3

Acercarse: 
 

  1. La idea es recorrer la lista enlazada hasta el final e inicializar la variable max y min a INT_MIN e INT_MAX respectivamente.
  2. Compruebe si el Node actual es principal o no. En caso afirmativo:
    • Si el valor del Node actual es mayor que el máximo, asigne el valor del Node actual al máximo.
    • Si el valor del Node actual es menor que min, asigne el valor del Node actual a min.
  3. Repita el paso anterior hasta llegar al final de la lista.

A continuación se muestra la implementación de la idea anterior: 
 

C++

// C++ implementation to find minimum
// and maximum prime number of
// the singly linked list
#include <bits/stdc++.h>
 
using namespace std;
 
// Node of the singly linked list
struct Node {
    int data;
    Node* next;
};
 
// Function to insert a node at the beginning
// of the singly Linked List
void push(Node** head_ref, int new_data)
{
    Node* new_node = new Node;
    new_node->data = new_data;
    new_node->next = (*head_ref);
    (*head_ref) = new_node;
}
 
// Function to check if a number is prime
bool isPrime(int n)
{
    // Corner cases
    if (n <= 1)
        return false;
    if (n <= 3)
        return true;
 
    // This is checked so that we can skip
    // middle five numbers in below loop
    if (n % 2 == 0 || n % 3 == 0)
        return false;
 
    for (int i = 5; i * i <= n; i = i + 6)
        if (n % i == 0 || n % (i + 2) == 0)
            return false;
 
    return true;
}
 
// Function to find maximum and minimum
// prime nodes in a linked list
void minmaxPrimeNodes(Node** head_ref)
{
    int minimum = INT_MAX;
    int maximum = INT_MIN;
    Node* ptr = *head_ref;
 
    while (ptr != NULL) {
        // If current node is prime
        if (isPrime(ptr->data)) {
            // Update minimum
            minimum = min(minimum, ptr->data);
 
            // Update maximum
            maximum = max(maximum, ptr->data);
        }
        ptr = ptr->next;
    }
 
    cout << "Minimum : " << minimum << endl;
    cout << "Maximum : " << maximum << endl;
}
 
// Driver program
int main()
{
    // start with the empty list
    Node* head = NULL;
 
    // create the linked list
    // 15 -> 16 -> 7 -> 6 -> 17
    push(&head, 17);
    push(&head, 7);
    push(&head, 6);
    push(&head, 16);
    push(&head, 15);
 
    minmaxPrimeNodes(&head);
 
    return 0;
}

Java

// Java implementation to find minimum
// and maximum prime number of
// the singly linked list
class GFG
{
     
// Node of the singly linked list
static class Node
{
    int data;
    Node next;
};
 
// Function to insert a node at the beginning
// of the singly Linked List
static Node push(Node head_ref, int new_data)
{
    Node new_node = new Node();
    new_node.data = new_data;
    new_node.next = (head_ref);
    (head_ref) = new_node;
    return head_ref;
}
 
// Function to check if a number is prime
static boolean isPrime(int n)
{
    // Corner cases
    if (n <= 1)
        return false;
    if (n <= 3)
        return true;
 
    // This is checked so that we can skip
    // middle five numbers in below loop
    if (n % 2 == 0 || n % 3 == 0)
        return false;
 
    for (int i = 5; i * i <= n; i = i + 6)
        if (n % i == 0 || n % (i + 2) == 0)
            return false;
 
    return true;
}
 
// Function to find maximum and minimum
// prime nodes in a linked list
static void minmaxPrimeNodes(Node head_ref)
{
    int minimum = Integer.MAX_VALUE;
    int maximum = Integer.MIN_VALUE;
    Node ptr = head_ref;
 
    while (ptr != null)
    {
        // If current node is prime
        if (isPrime(ptr.data))
        {
            // Update minimum
            minimum = Math.min(minimum, ptr.data);
 
            // Update maximum
            maximum = Math.max(maximum, ptr.data);
        }
        ptr = ptr.next;
    }
 
    System.out.println("Minimum : " + minimum );
    System.out.println("Maximum : " + maximum );
}
 
// Driver code
public static void main(String args[])
{
    // start with the empty list
    Node head = null;
 
    // create the linked list
    // 15 . 16 . 7 . 6 . 17
    head = push(head, 17);
    head = push(head, 7);
    head = push(head, 6);
    head = push(head, 16);
    head = push(head, 15);
 
    minmaxPrimeNodes(head);
 
}
}
 
// This code is contributed by Arnab Kundu

Python3

# Python3 implementation to find minimum
# and maximum prime number of
# the singly linked list
     
# Structure of a Node
class Node:
    def __init__(self, data):
        self.data = data
        self.next = None
 
# Function to insert a node at the beginning
# of the singly Linked List
def push(head_ref, new_data) :
 
    new_node = Node(0)
    new_node.data = new_data
    new_node.next = (head_ref)
    (head_ref) = new_node
    return head_ref
 
# Function to check if a number is prime
def isPrime(n):
 
    # Corner cases
    if (n <= 1) :
        return False
    if (n <= 3) :
        return True
         
    # This is checked so that we can skip
    # middle five numbers in below loop
    if (n % 2 == 0 or n % 3 == 0) :
        return False
    i = 5
    while(i * i <= n) :
        if (n % i == 0 or n % (i + 2) == 0):
            return False
        i = i + 6
     
    return True
 
# Function to find maximum and minimum
# prime nodes in a linked list
def minmaxPrimeNodes(head_ref) :
 
    minimum = 999999999
    maximum = -999999999
    ptr = head_ref
 
    while (ptr != None):
         
        # If current node is prime
        if (isPrime(ptr.data)):
         
            # Update minimum
            minimum = min(minimum, ptr.data)
 
            # Update maximum
            maximum = max(maximum, ptr.data)
         
        ptr = ptr.next
 
    print ("Minimum : ", minimum)
    print ("Maximum : ", maximum)
 
# Driver code
 
# start with the empty list
head = None
 
# create the linked list
# 15 . 16 . 7 . 6 . 17
head = push(head, 17)
head = push(head, 7)
head = push(head, 6)
head = push(head, 16)
head = push(head, 15)
 
minmaxPrimeNodes(head)
 
# This code is contributed by Arnab Kundu

C#

// C# implementation to find minimum
// and maximum prime number of
// the singly linked list
using System;
     
class GFG
{
     
// Node of the singly linked list
public class Node
{
    public int data;
    public Node next;
};
 
// Function to insert a node at the beginning
// of the singly Linked List
static Node push(Node head_ref, int new_data)
{
    Node new_node = new Node();
    new_node.data = new_data;
    new_node.next = (head_ref);
    (head_ref) = new_node;
    return head_ref;
}
 
// Function to check if a number is prime
static bool isPrime(int n)
{
    // Corner cases
    if (n <= 1)
        return false;
    if (n <= 3)
        return true;
 
    // This is checked so that we can skip
    // middle five numbers in below loop
    if (n % 2 == 0 || n % 3 == 0)
        return false;
 
    for (int i = 5; i * i <= n; i = i + 6)
        if (n % i == 0 || n % (i + 2) == 0)
            return false;
 
    return true;
}
 
// Function to find maximum and minimum
// prime nodes in a linked list
static void minmaxPrimeNodes(Node head_ref)
{
    int minimum = int.MaxValue;
    int maximum = int.MinValue;
    Node ptr = head_ref;
 
    while (ptr != null)
    {
        // If current node is prime
        if (isPrime(ptr.data))
        {
            // Update minimum
            minimum = Math.Min(minimum, ptr.data);
 
            // Update maximum
            maximum = Math.Max(maximum, ptr.data);
        }
        ptr = ptr.next;
    }
 
    Console.WriteLine("Minimum : " + minimum);
    Console.WriteLine("Maximum : " + maximum);
}
 
// Driver code
public static void Main()
{
    // start with the empty list
    Node head = null;
 
    // create the linked list
    // 15 . 16 . 7 . 6 . 17
    head = push(head, 17);
    head = push(head, 7);
    head = push(head, 6);
    head = push(head, 16);
    head = push(head, 15);
 
    minmaxPrimeNodes(head);
}
}
 
// This code is contributed by Princi Singh

Javascript

<script>
// javascript implementation to find minimum
// and maximum prime number of
// the singly linked list     // Node of the singly linked list
class Node {
    constructor(val) {
        this.data = val;
        this.next = null;
    }
}
 
 
    // Function to insert a node at the beginning
    // of the singly Linked List
    function push(head_ref , new_data) {
var new_node = new Node();
        new_node.data = new_data;
        new_node.next = (head_ref);
        (head_ref) = new_node;
        return head_ref;
    }
 
    // Function to check if a number is prime
    function isPrime(n) {
        // Corner cases
        if (n <= 1)
            return false;
        if (n <= 3)
            return true;
 
        // This is checked so that we can skip
        // middle five numbers in below loop
        if (n % 2 == 0 || n % 3 == 0)
            return false;
 
        for (i = 5; i * i <= n; i = i + 6)
            if (n % i == 0 || n % (i + 2) == 0)
                return false;
 
        return true;
    }
 
    // Function to find maximum and minimum
    // prime nodes in a linked list
    function minmaxPrimeNodes(head_ref) {
        var minimum = Number.MAX_VALUE;
        var maximum = Number.MIN_VALUE;
var ptr = head_ref;
 
        while (ptr != null) {
            // If current node is prime
            if (isPrime(ptr.data)) {
                // Update minimum
                minimum = Math.min(minimum, ptr.data);
 
                // Update maximum
                maximum = Math.max(maximum, ptr.data);
            }
            ptr = ptr.next;
        }
 
        document.write("Minimum : " + minimum);
        document.write("<br/>Maximum : " + maximum);
    }
 
    // Driver code
     
        // start with the empty list
var head = null;
 
        // create the linked list
        // 15 . 16 . 7 . 6 . 17
        head = push(head, 17);
        head = push(head, 7);
        head = push(head, 6);
        head = push(head, 16);
        head = push(head, 15);
 
        minmaxPrimeNodes(head);
 
 
// This code contributed by umadevi9616
</script>
Producción: 

Minimum : 7
Maximum : 17

 

Complejidad de tiempo: O(N), donde N es el número de Nodes en la lista enlazada.
 

Publicación traducida automáticamente

Artículo escrito por VishalBachchas y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *