Números primos mínimos y máximos en una array

Dada una array arr[] de N enteros positivos. La tarea es encontrar los elementos primos mínimo y máximo en la array dada. 
Ejemplos: 
 

Input: arr[] = 1, 3, 4, 5, 7
Output: Minimum : 3
        Maximum : 7

Input: arr[] = 1, 2, 3, 4, 5, 6, 7, 11
Output: Minimum : 2
        Maximum : 11

Enfoque ingenuo: 
tome una variable min y max. Inicialice min con INT_MAX y max con INT_MIN. Recorra la array y siga verificando cada elemento si es primo o no y actualice el elemento primo mínimo y máximo al mismo tiempo. 
Enfoque eficiente: 
genere todos los números primos hasta el elemento máximo de la array utilizando el tamiz de Eratóstenes y guárdelos en un hash. Ahora recorra la array y encuentre el elemento mínimo y máximo que son primos usando la tabla hash.
A continuación se muestra la implementación del enfoque anterior: 
 

C++

// CPP program to find minimum and maximum
// prime number in given array.
#include <bits/stdc++.h>
using namespace std;
 
// Function to find count of prime
void prime(int arr[], int n)
{
    // Find maximum value in the array
    int max_val = *max_element(arr, arr + n);
 
    // USE SIEVE TO FIND ALL PRIME NUMBERS LESS
    // THAN OR EQUAL TO max_val
    // Create a boolean array "prime[0..n]". A
    // value in prime[i] will finally be false
    // if i is Not a prime, else true.
    vector<bool> prime(max_val + 1, true);
 
    // Remaining part of SIEVE
    prime[0] = false;
    prime[1] = false;
    for (int p = 2; p * p <= max_val; p++) {
 
        // If prime[p] is not changed, then
        // it is a prime
        if (prime[p] == true) {
 
            // Update all multiples of p
            for (int i = p * 2; i <= max_val; i += p)
                prime[i] = false;
        }
    }
 
    // Minimum and Maximum prime number
    int minimum = INT_MAX;
    int maximum = INT_MIN;
    for (int i = 0; i < n; i++)
        if (prime[arr[i]]) {
            minimum = min(minimum, arr[i]);
            maximum = max(maximum, arr[i]);
        }
 
    cout << "Minimum : " << minimum << endl;
    cout << "Maximum : " << maximum << endl;
}
 
// Driver code
int main()
{
 
    int arr[] = { 1, 2, 3, 4, 5, 6, 7 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    prime(arr, n);
 
    return 0;
}

Java

// Java program to find minimum and maximum
// prime number in given array.
import java.util.*;
 
class GFG {
 
// Function to find count of prime
static void prime(int arr[], int n)
{
    // Find maximum value in the array
    int max_val = Arrays.stream(arr).max().getAsInt();
 
         
    // USE SIEVE TO FIND ALL PRIME NUMBERS LESS
    // THAN OR EQUAL TO max_val
    // Create a boolean array "prime[0..n]". A
    // value in prime[i] will finally be false
    // if i is Not a prime, else true.
    Vector<Boolean> prime = new Vector<Boolean>();
        for(int i= 0;i<max_val+1;i++)
            prime.add(Boolean.TRUE);
         
    // Remaining part of SIEVE
    prime.add(0, Boolean.FALSE);
    prime.add(1, Boolean.FALSE);
    for (int p = 2; p * p <= max_val; p++) {
 
        // If prime[p] is not changed, then
        // it is a prime
        if (prime.get(p) == true) {
 
            // Update all multiples of p
            for (int i = p * 2; i <= max_val; i += p)
                prime.add(i, Boolean.FALSE);
        }
    }
 
    // Minimum and Maximum prime number
    int minimum = Integer.MAX_VALUE;
    int maximum = Integer.MIN_VALUE;
    for (int i = 0; i < n; i++)
        if (prime.get(arr[i])) {
            minimum = Math.min(minimum, arr[i]);
            maximum = Math.max(maximum, arr[i]);
        }
 
    System.out.println("Minimum : " + minimum) ;
    System.out.println("Maximum : " + maximum );
}
 
// Driver code
    public static void main(String[] args) {
        int arr[] = { 1, 2, 3, 4, 5, 6, 7 };
    int n = arr.length;
 
    prime(arr, n);
    }
}
/*This code is contributed by 29AjayKumar*/

Python3

# Python3 program to find minimum and
# maximum prime number in given array.
import math as mt
 
# Function to find count of prime
def Prime(arr, n):
 
    # Find maximum value in the array
    max_val = max(arr)
 
    # USE SIEVE TO FIND ALL PRIME NUMBERS
    # LESS THAN OR EQUAL TO max_val
    # Create a boolean array "prime[0..n]".
    # A value in prime[i] will finally be
    # false if i is Not a prime, else true.
    prime = [True for i in range(max_val + 1)]
 
    # Remaining part of SIEVE
    prime[0] = False
    prime[1] = False
    for p in range(2, mt.ceil(mt.sqrt(max_val))):
 
        # If prime[p] is not changed,
        # then it is a prime
        if (prime[p] == True):
 
            # Update all multiples of p
            for i in range(2 * p, max_val + 1, p):
                    prime[i] = False
         
    # Minimum and Maximum prime number
    minimum = 10**9
    maximum = -10**9
    for i in range(n):
        if (prime[arr[i]] == True):
            minimum = min(minimum, arr[i])
            maximum = max(maximum, arr[i])
         
    print("Minimum : ", minimum )
    print("Maximum : ", maximum )
 
# Driver code
arr = [1, 2, 3, 4, 5, 6, 7]
n = len(arr)
 
Prime(arr, n)
 
# This code is contributed by
# Mohit kumar 29

C#

// A C# program to find minimum and maximum
// prime number in given array.
using System;
using System.Linq;
using System.Collections.Generic;
 
class GFG
{
 
// Function to find count of prime
static void prime(int []arr, int n)
{
    // Find maximum value in the array
    int max_val = arr.Max();
 
         
    // USE SIEVE TO FIND ALL PRIME NUMBERS LESS
    // THAN OR EQUAL TO max_val
    // Create a boolean array "prime[0..n]". A
    // value in prime[i] will finally be false
    // if i is Not a prime, else true.
    List<bool>prime = new List<bool>();
        for(int i = 0; i < max_val + 1;i++)
            prime.Add(true);
         
    // Remaining part of SIEVE
    prime.Insert(0, false);
    prime.Insert(1, false);
    for (int p = 2; p * p <= max_val; p++)
    {
 
        // If prime[p] is not changed, then
        // it is a prime
        if (prime[p] == true)
        {
 
            // Update all multiples of p
            for (int i = p * 2; i <= max_val; i += p)
                prime.Insert(i, false);
        }
    }
 
    // Minimum and Maximum prime number
    int minimum = int.MaxValue;
    int maximum = int.MinValue;
    for (int i = 0; i < n; i++)
        if (prime[arr[i]])
        {
            minimum = Math.Min(minimum, arr[i]);
            maximum = Math.Max(maximum, arr[i]);
        }
 
    Console.WriteLine("Minimum : " + minimum) ;
    Console.WriteLine("Maximum : " + maximum );
}
 
    // Driver code
    public static void Main()
    {
        int []arr = { 1, 2, 3, 4, 5, 6, 7 };
        int n = arr.Length;
 
        prime(arr, n);
    }
}
 
/* This code contributed by PrinciRaj1992 */

Javascript

<script>
// Javascript program to find minimum and maximum
// prime number in given array.
 
// Function to find count of prime
function prime(arr, n)
{
    // Find maximum value in the array
    let max_val = arr.sort((b, a) => a - b)[0];
 
    // USE SIEVE TO FIND ALL PRIME NUMBERS LESS
    // THAN OR EQUAL TO max_val
    // Create a boolean array "prime[0..n]". A
    // value in prime[i] will finally be false
    // if i is Not a prime, else true.
    let prime = new Array(max_val + 1).fill(true);
 
    // Remaining part of SIEVE
    prime[0] = false;
    prime[1] = false;
    for (let p = 2; p * p <= max_val; p++) {
 
        // If prime[p] is not changed, then
        // it is a prime
        if (prime[p] == true) {
 
            // Update all multiples of p
            for (let i = p * 2; i <= max_val; i += p)
                prime[i] = false;
        }
    }
 
    // Minimum and Maximum prime number
    let minimum = Number.MAX_SAFE_INTEGER;
    let maximum = Number.MIN_SAFE_INTEGER;
    for (let i = 0; i < n; i++)
        if (prime[arr[i]]) {
            minimum = Math.min(minimum, arr[i]);
            maximum = Math.max(maximum, arr[i]);
        }
 
    document.write("Minimum : " + minimum + "<br>");
    document.write("Maximum : " + maximum + "<br>");
}
 
// Driver code
 
let arr = [1, 2, 3, 4, 5, 6, 7];
let n = arr.length;
 
prime(arr, n);
 
// This code is contributed by Saurabh Jaiswal
</script>
Producción: 

Minimum : 2
Maximum : 7

 

Complejidad del tiempo: O(n*log(log(n)))
 

Publicación traducida automáticamente

Artículo escrito por VishalBachchas y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *