Obtenga todas las filas en un Pandas DataFrame que contiene una substring dada

Veamos cómo obtener todas las filas en un Pandas DataFrame que contiene una substring dada con la ayuda de diferentes ejemplos.

Código #1: Verifique los valores PG en la columna Posición

# importing pandas 
import pandas as pd
  
# Creating the dataframe with dict of lists
df = pd.DataFrame({'Name': ['Geeks', 'Peter', 'James', 'Jack', 'Lisa'],
                   'Team': ['Boston', 'Boston', 'Boston', 'Chele', 'Barse'],
                   'Position': ['PG', 'PG', 'UG', 'PG', 'UG'],
                   'Number': [3, 4, 7, 11, 5],
                   'Age': [33, 25, 34, 35, 28],
                   'Height': ['6-2', '6-4', '5-9', '6-1', '5-8'],
                   'Weight': [89, 79, 113, 78, 84],
                   'College': ['MIT', 'MIT', 'MIT', 'Stanford', 'Stanford'],
                   'Salary': [99999, 99994, 89999, 78889, 87779]},
                   index =['ind1', 'ind2', 'ind3', 'ind4', 'ind5'])
print(df, "\n")
  
print("Check PG values in Position column:\n")
df1 = df['Position'].str.contains("PG")
print(df1)

Producción:

Pero este resultado no parece muy útil, ya que devuelve los valores booleanos con el índice. A ver si podemos hacer algo mejor.
 

Código #2: Obtener las filas que cumplen la condición

# importing pandas as pd
import pandas as pd
  
# Creating the dataframe with dict of lists
df = pd.DataFrame({'Name': ['Geeks', 'Peter', 'James', 'Jack', 'Lisa'],
                   'Team': ['Boston', 'Boston', 'Boston', 'Chele', 'Barse'],
                   'Position': ['PG', 'PG', 'UG', 'PG', 'UG'],
                   'Number': [3, 4, 7, 11, 5],
                   'Age': [33, 25, 34, 35, 28],
                   'Height': ['6-2', '6-4', '5-9', '6-1', '5-8'],
                   'Weight': [89, 79, 113, 78, 84],
                   'College': ['MIT', 'MIT', 'MIT', 'Stanford', 'Stanford'],
                   'Salary': [99999, 99994, 89999, 78889, 87779]},
                   index =['ind1', 'ind2', 'ind3', 'ind4', 'ind5'])
  
df1 = df[df['Position'].str.contains("PG")]
print(df1)

Producción:

Código n.º 3: filtre todas las filas en las que Equipo contenga ‘Boston’ o Universidad contenga ‘MIT’.

# importing pandas
import pandas as pd
  
# Creating the dataframe with dict of lists
df = pd.DataFrame({'Name': ['Geeks', 'Peter', 'James', 'Jack', 'Lisa'],
                   'Team': ['Boston', 'Boston', 'Boston', 'Chele', 'Barse'],
                   'Position': ['PG', 'PG', 'UG', 'PG', 'UG'],
                   'Number': [3, 4, 7, 11, 5],
                   'Age': [33, 25, 34, 35, 28],
                   'Height': ['6-2', '6-4', '5-9', '6-1', '5-8'],
                   'Weight': [89, 79, 113, 78, 84],
                   'College': ['MIT', 'MIT', 'MIT', 'Stanford', 'Stanford'],
                   'Salary': [99999, 99994, 89999, 78889, 87779]},
                   index =['ind1', 'ind2', 'ind3', 'ind4', 'ind5'])
  
  
df1 = df[df['Team'].str.contains("Boston") | df['College'].str.contains('MIT')]
print(df1)

Salida:

 
Código n.º 4: las filas de filtro que verifican el nombre del equipo contienen ‘Boston y la posición debe ser PG.

# importing pandas module 
import pandas as pd 
    
# making data frame 
df = pd.read_csv("https://media.geeksforgeeks.org/wp-content/uploads/nba.csv") 
  
  
df1 = df[df['Team'].str.contains('Boston') & df['Position'].str.contains('PG')]
df1

Producción:

 

Código n.° 5: las filas de filtro que verifican que la posición contiene PG y la universidad debe contener como UC.

# importing pandas module 
import pandas as pd 
    
# making data frame 
df = pd.read_csv("https://media.geeksforgeeks.org/wp-content/uploads/nba.csv") 
  
  
df1 = df[df['Position'].str.contains("PG") & df['College'].str.contains('UC')]
df1

Producción:

 

Publicación traducida automáticamente

Artículo escrito por Shivam_k y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *