Organice N elementos en forma circular de modo que todos los elementos sean estrictamente menores que la suma de los elementos adyacentes

Dada una array de N enteros, la tarea es ordenarlos en un arreglo circular de tal manera que el elemento sea estrictamente menor que la suma de sus elementos adyacentes. En caso de que tal arreglo no sea posible, imprima -1
Tenga en cuenta que puede haber múltiples formas de organizar los elementos de modo que se cumpla la condición y la tarea es encontrar tal disposición.
Ejemplos: 
 

Entrada: arr[] = {1, 4, 4, 3, 2} 
Salida: 1 3 4 4 2 
arr[0] = 1 < (2 + 3) 
arr[1] = 4 < (1 + 4) 
arr[ 2] = 4 < (4 + 3) 
arr[3] = 3 < (4 + 2) 
arr[4] = 2 < (3 + 1)
Entrada: arr[] = {8, 13, 5} 
Salida: – 1 
 

Enfoque: el problema se puede resolver utilizando un enfoque codicioso, primero ordenamos la array y luego colocamos el elemento más pequeño al principio, el segundo más pequeño al final, el tercero más pequeño en la segunda posición y el cuarto más pequeño en la penúltima posición en otra array. Una vez que se completa el arreglo, verifique si la condición dada se cumple o no.
A continuación se muestra la implementación del enfoque anterior: 
 

C++

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to print the arrangement that
// satisfies the given condition
void printArrangement(int a[], int n)
{
 
    // Sort the array initially
    sort(a, a + n);
 
    // Array that stores the arrangement
    int b[n];
 
    // Once the array is sorted
    // Re-fill the array again in the
    // mentioned way in the approach
    int low = 0, high = n - 1;
    for (int i = 0; i < n; i++) {
        if (i % 2 == 0)
            b[low++] = a[i];
        else
            b[high--] = a[i];
    }
 
    // Iterate in the array
    // and check if the arrangement made
    // satisfies the given condition or not
    for (int i = 0; i < n; i++) {
 
        // For the first element
        // the adjacents will be a[1] and a[n-1]
        if (i == 0) {
            if (b[n - 1] + b[1] <= b[i]) {
                cout << -1;
                return;
            }
        }
 
        // For the last element
        // the adjacents will be a[0] and a[n-2]
        else if (i == (n - 1)) {
            if (b[n - 2] + b[0] <= b[i]) {
                cout << -1;
                return;
            }
        }
        else {
            if (b[i - 1] + b[i + 1] <= b[i]) {
                cout << -1;
                return;
            }
        }
    }
 
    // If we reach this position then
    // the arrangement is possible
    for (int i = 0; i < n; i++)
        cout << b[i] << " ";
}
 
// Driver code
int main()
{
    int a[] = { 1, 4, 4, 3, 2 };
    int n = sizeof(a) / sizeof(a[0]);
 
    printArrangement(a, n);
 
    return 0;
}

Java

// Java implementation of the approach
import java.util.Arrays;
 
class GFG
{
 
// Function to print the arrangement that
// satisfies the given condition
static void printArrangement(int a[], int n)
{
 
    // Sort the array initially
    Arrays.sort(a);
 
    // Array that stores the arrangement
    int b[] = new int[n];
 
    // Once the array is sorted
    // Re-fill the array again in the
    // mentioned way in the approach
    int low = 0, high = n - 1;
    for (int i = 0; i < n; i++)
    {
        if (i % 2 == 0)
            b[low++] = a[i];
        else
            b[high--] = a[i];
    }
 
    // Iterate in the array
    // and check if the arrangement made
    // satisfies the given condition or not
    for (int i = 0; i < n; i++)
    {
 
        // For the first element
        // the adjacents will be a[1] and a[n-1]
        if (i == 0)
        {
            if (b[n - 1] + b[1] <= b[i])
            {
                System.out.print(-1);
                return;
            }
        }
 
        // For the last element
        // the adjacents will be a[0] and a[n-2]
        else if (i == (n - 1))
        {
            if (b[n - 2] + b[0] <= b[i])
            {
                System.out.print(-1);
                return;
            }
        }
        else
        {
            if (b[i - 1] + b[i + 1] <= b[i])
            {
                System.out.print(-1);
                return;
            }
        }
    }
 
    // If we reach this position then
    // the arrangement is possible
    for (int i = 0; i < n; i++)
        System.out.print(b[i] + " ");
}
 
// Driver code
public static void main (String[] args)
{
    int a[] = { 1, 4, 4, 3, 2 };
    int n = a.length;
 
    printArrangement(a, n);
}
}
 
// This code is contributed by anuj_67..

Python3

# Python3 implementation of the approach
 
# Function to print the arrangement that
# satisfies the given condition
def printArrangement(a, n):
 
    # Sort the array initially
    a = sorted(a)
 
    # Array that stores the arrangement
    b = [0 for i in range(n)]
 
    # Once the array is sorted
    # Re-fill the array again in the
    # mentioned way in the approach
    low = 0
    high = n - 1
    for i in range(n):
        if (i % 2 == 0):
            b[low] = a[i]
            low += 1
        else:
            b[high] = a[i]
            high -= 1
 
    # Iterate in the array
    # and check if the arrangement made
    # satisfies the given condition or not
    for i in range(n):
 
        # For the first element
        # the adjacents will be a[1] and a[n-1]
        if (i == 0):
            if (b[n - 1] + b[1] <= b[i]):
                print("-1")
                return
                 
        # For the last element
        # the adjacents will be a[0] and a[n-2]
        elif (i == (n - 1)) :
            if (b[n - 2] + b[0] <= b[i]):
                print("-1")
                return
 
        else:
            if (b[i - 1] + b[i + 1] <= b[i]):
                print("-1")
                return
 
    # If we reach this position then
    # the arrangement is possible
    for i in range(n):
        print(b[i], end = " ")
 
# Driver code
a = [ 1, 4, 4, 3, 2 ]
n = len(a)
 
printArrangement(a, n)
 
# This code is contributed by Mohit Kumar

C#

// C# implementation of the approach
using System;
 
class GFG
{
 
// Function to print the arrangement that
// satisfies the given condition
static void printArrangement(int []a, int n)
{
 
    // Sort the array initially
    Array.Sort(a);
 
    // Array that stores the arrangement
    int []b = new int[n];
 
    // Once the array is sorted
    // Re-fill the array again in the
    // mentioned way in the approach
    int low = 0, high = n - 1;
    for (int i = 0; i < n; i++)
    {
        if (i % 2 == 0)
            b[low++] = a[i];
        else
            b[high--] = a[i];
    }
 
    // Iterate in the array
    // and check if the arrangement made
    // satisfies the given condition or not
    for (int i = 0; i < n; i++)
    {
 
        // For the first element
        // the adjacents will be a[1] and a[n-1]
        if (i == 0)
        {
            if (b[n - 1] + b[1] <= b[i])
            {
                Console.Write(-1);
                return;
            }
        }
 
        // For the last element
        // the adjacents will be a[0] and a[n-2]
        else if (i == (n - 1))
        {
            if (b[n - 2] + b[0] <= b[i])
            {
                Console.Write(-1);
                return;
            }
        }
        else
        {
            if (b[i - 1] + b[i + 1] <= b[i])
            {
                Console.Write(-1);
                return;
            }
        }
    }
 
    // If we reach this position then
    // the arrangement is possible
    for (int i = 0; i < n; i++)
        Console.Write(b[i] + " ");
}
 
// Driver code
public static void Main ()
{
    int []a = { 1, 4, 4, 3, 2 };
    int n = a.Length;
 
    printArrangement(a, n);
}
}
 
// This code is contributed by anuj_67..

Javascript

<script>
// javascript implementation of the approach
 
    // Function to print the arrangement that
    // satisfies the given condition
    function printArrangement(a, n)
    {
 
        // Sort the array initially
        a.sort();
 
        // Array that stores the arrangement
        var b = Array(n).fill(0);
 
        // Once the array is sorted
        // Re-fill the array again in the
        // mentioned way in the approach
        var low = 0, high = n - 1;
        for (i = 0; i < n; i++) {
            if (i % 2 == 0)
                b[low++] = a[i];
            else
                b[high--] = a[i];
        }
 
        // Iterate in the array
        // and check if the arrangement made
        // satisfies the given condition or not
        for (i = 0; i < n; i++) {
 
            // For the first element
            // the adjacents will be a[1] and a[n-1]
            if (i == 0) {
                if (b[n - 1] + b[1] <= b[i]) {
                    document.write(-1);
                    return;
                }
            }
 
            // For the last element
            // the adjacents will be a[0] and a[n-2]
            else if (i == (n - 1)) {
                if (b[n - 2] + b[0] <= b[i]) {
                    document.write(-1);
                    return;
                }
            } else {
                if (b[i - 1] + b[i + 1] <= b[i]) {
                    document.write(-1);
                    return;
                }
            }
        }
 
        // If we reach this position then
        // the arrangement is possible
        for (i = 0; i < n; i++)
            document.write(b[i] + " ");
    }
 
    // Driver code
        var a = [ 1, 4, 4, 3, 2 ];
        var n = a.length;
 
        printArrangement(a, n);
 
// This code is contributed by todaysgaurav
</script>
Producción: 

1 3 4 4 2

 

Complejidad temporal: O(N log N) 
Espacio auxiliar: O(n)
 

Publicación traducida automáticamente

Artículo escrito por Striver y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *