Dada una array de enteros. Encuentre el par en una array que tenga un valor XOR mínimo.
Ejemplos:
Input : arr[] = {9, 5, 3} Output : 6 All pair with xor value (9 ^ 5) => 12, (5 ^ 3) => 6, (9 ^ 3) => 10. Minimum XOR value is 6 Input : arr[] = {1, 2, 3, 4, 5} Output : 1
Una solución simple es generar todos los pares de la array dada y calcular XOR sus valores. Finalmente, devuelva el valor XOR mínimo. Esta solución toma O(n 2 ) tiempo.
Implementación:
C++
// C++ program to find minimum XOR value in an array. #include <bits/stdc++.h> using namespace std; // Returns minimum xor value of pair in arr[0..n-1] int minXOR(int arr[], int n) { int min_xor = INT_MAX; // Initialize result // Generate all pair of given array for (int i = 0; i < n; i++) for (int j = i + 1; j < n; j++) // update minimum xor value if required min_xor = min(min_xor, arr[i] ^ arr[j]); return min_xor; } // Driver program int main() { int arr[] = { 9, 5, 3 }; int n = sizeof(arr) / sizeof(arr[0]); cout << minXOR(arr, n) << endl; return 0; }
Java
// Java program to find minimum XOR value in an array. class GFG { // Returns minimum xor value of pair in arr[0..n-1] static int minXOR(int arr[], int n) { int min_xor = Integer.MAX_VALUE; // Initialize result // Generate all pair of given array for (int i = 0; i < n; i++) for (int j = i + 1; j < n; j++) // update minimum xor value if required min_xor = Math.min(min_xor, arr[i] ^ arr[j]); return min_xor; } // Driver program public static void main(String args[]) { int arr[] = { 9, 5, 3 }; int n = arr.length; System.out.println(minXOR(arr, n)); } } // This code is contributed by Sumit Ghosh
Python3
# Python program to find minimum # XOR value in an array. # Function to find minimum XOR pair def minXOR(arr, n): # Sort given array arr.sort(); min_xor = 999999 val = 0 # calculate min xor of # consecutive pairs for i in range (0, n-1): for j in range (i+1, n-1): # update minimum xor value # if required val = arr[i] ^ arr[j] min_xor = min(min_xor, val) return min_xor # Driver program arr = [ 9, 5, 3 ] n = len(arr) print(minXOR(arr, n)) # This code is contributed by Sam007.
C#
// C# program to find minimum // XOR value in an array. using System; class GFG { // Returns minimum xor value of // pair in arr[0..n-1] static int minXOR(int[] arr, int n) { // Initialize result int min_xor = int.MaxValue; // Generate all pair of given array for (int i = 0; i < n; i++) for (int j = i + 1; j < n; j++) // update minimum xor value if required min_xor = Math.Min(min_xor, arr[i] ^ arr[j]); return min_xor; } // Driver program public static void Main() { int[] arr = { 9, 5, 3 }; int n = arr.Length; Console.WriteLine(minXOR(arr, n)); } } // This code is contributed by Sam007
PHP
<?php // PHP program to find minimum // XOR value in an array. // Returns minimum xor value // of pair in arr[0..n-1] function minXOR($arr, $n) { // Initialize result $min_xor = PHP_INT_MAX; // Generate all pair of given array for ( $i = 0; $i < $n; $i++) for ( $j = $i + 1; $j < $n; $j++) // update minimum xor // value if required $min_xor = min($min_xor, $arr[$i] ^ $arr[$j]); return $min_xor; } // Driver Code $arr = array(9, 5, 3); $n = count($arr); echo minXOR($arr, $n); // This code is contributed by anuj_67. ?>
Javascript
<script> // Javascript program to find // minimum XOR value in an array. // Returns minimum xor value of pair in arr[0..n-1] function minXOR(arr, n) { // Initialize result let min_xor = Number.MAX_VALUE; // Generate all pair of given array for (let i = 0; i < n; i++) for (let j = i + 1; j < n; j++) // update minimum xor value if required min_xor = Math.min(min_xor, arr[i] ^ arr[j]); return min_xor; } // Driver program let arr = [ 9, 5, 3 ]; let n = arr.length; document.write(minXOR(arr, n)); </script>
6
Una solución eficiente puede resolver este problema en tiempo O(nlogn).
Algoritmo:
- Ordenar la array dada
- Atraviesa y verifica XOR para cada par consecutivo
A continuación se muestra la implementación del enfoque anterior:
C++
#include <bits/stdc++.h> using namespace std; // Function to find minimum XOR pair int minXOR(int arr[], int n) { // Sort given array sort(arr, arr + n); int minXor = INT_MAX; int val = 0; // calculate min xor of consecutive pairs for (int i = 0; i < n - 1; i++) { val = arr[i] ^ arr[i + 1]; minXor = min(minXor, val); } return minXor; } // Driver program int main() { int arr[] = { 9, 5, 3 }; int n = sizeof(arr) / sizeof(arr[0]); cout << minXOR(arr, n) << endl; return 0; }
Java
import java.util.Arrays; class GFG { // Function to find minimum XOR pair static int minXOR(int arr[], int n) { // Sort given array Arrays.parallelSort(arr); int minXor = Integer.MAX_VALUE; int val = 0; // calculate min xor of consecutive pairs for (int i = 0; i < n - 1; i++) { val = arr[i] ^ arr[i + 1]; minXor = Math.min(minXor, val); } return minXor; } // Driver program public static void main(String args[]) { int arr[] = { 9, 5, 3 }; int n = arr.length; System.out.println(minXOR(arr, n)); } } // This code is contributed by Sumit Ghosh
Python3
import sys # Function to find minimum XOR pair def minXOR(arr, n): # Sort given array arr.sort() minXor = int(sys.float_info.max) val = 0 # calculate min xor of consecutive pairs for i in range(0,n-1): val = arr[i] ^ arr[i + 1]; minXor = min(minXor, val); return minXor # Driver program arr = [9, 5, 3] n = len(arr) print(minXOR(arr, n)) # This code is contributed by Sam007.
C#
// C# program to find minimum // XOR value in an array. using System; class GFG { // Function to find minimum XOR pair static int minXOR(int[] arr, int n) { // Sort given array Array.Sort(arr); int minXor = int.MaxValue; int val = 0; // calculate min xor of consecutive pairs for (int i = 0; i < n - 1; i++) { val = arr[i] ^ arr[i + 1]; minXor = Math.Min(minXor, val); } return minXor; } // Driver program public static void Main() { int[] arr = { 9, 5, 3 }; int n = arr.Length; Console.WriteLine(minXOR(arr, n)); } } // This code is contributed by Sam007
PHP
<?php // Function to find minimum XOR pair function minXOR($arr, $n) { // Sort given array sort($arr); $minXor = PHP_INT_MAX; $val = 0; // calculate min xor // of consecutive pairs for ($i = 0; $i < $n - 1; $i++) { $val = $arr[$i] ^ $arr[$i + 1]; $minXor = min($minXor, $val); } return $minXor; } // Driver Code $arr = array(9, 5, 3); $n = count($arr); echo minXOR($arr, $n); // This code is contributed by Smitha. ?>
Javascript
<script> // Function to find minimum XOR pair function minXOR(arr, n) { // Sort given array arr.sort(); let minXor = Number.MAX_VALUE; let val = 0; // calculate min xor of consecutive pairs for (let i = 0; i < n - 1; i++) { val = arr[i] ^ arr[i + 1]; minXor = Math.min(minXor, val); } return minXor; } // Driver program let arr = [ 9, 5, 3 ]; let n = arr.length; document.write(minXOR(arr, n)); </script>
6
Complejidad de tiempo: O(N*logN)
Complejidad de espacio: O(1)
Una solución adicional más eficiente puede resolver el problema anterior en tiempo O (n) bajo el supuesto de que los números enteros toman una cantidad fija de bits para almacenar. La idea es utilizar Trie Data Structure.
Algoritmo:
- Crea un intento vacío. Cada Node de trie contiene dos hijos para 0 y 1 bits.
- Inicialice min_xor = INT_MAX, inserte arr[0] en trie
- Recorra todos los elementos de la array uno por uno a partir del segundo.
- Primero encuentre el valor mínimo de diferencia de setbet en trie
- hacer xor del elemento actual con la mínima diferencia de bit establecido ese valor
- actualice el valor min_xor si es necesario
- inserte el elemento de array actual en trie
- volver min_xor
A continuación se muestra la implementación del algoritmo anterior.
C++
// C++ program to find minimum XOR value in an array. #include <bits/stdc++.h> using namespace std; #define INT_SIZE 32 // A Trie Node struct TrieNode { int value; // used in leaf node TrieNode* Child[2]; }; // Utility function to create a new Trie node TrieNode* getNode() { TrieNode* newNode = new TrieNode; newNode->value = 0; newNode->Child[0] = newNode->Child[1] = NULL; return newNode; } // utility function insert new key in trie void insert(TrieNode* root, int key) { TrieNode* temp = root; // start from the most significant bit, insert all // bit of key one-by-one into trie for (int i = INT_SIZE - 1; i >= 0; i--) { // Find current bit in given prefix bool current_bit = (key & (1 << i)); // Add a new Node into trie if (temp->Child[current_bit] == NULL) temp->Child[current_bit] = getNode(); temp = temp->Child[current_bit]; } // store value at leafNode temp->value = key; } // Returns minimum XOR value of an integer inserted // in Trie and given key. int minXORUtil(TrieNode* root, int key) { TrieNode* temp = root; for (int i = INT_SIZE - 1; i >= 0; i--) { // Find current bit in given prefix bool current_bit = (key & (1 << i)); // Traversal Trie, look for prefix that has // same bit if (temp->Child[current_bit] != NULL) temp = temp->Child[current_bit]; // if there is no same bit.then looking for // opposite bit else if (temp->Child[1 - current_bit] != NULL) temp = temp->Child[1 - current_bit]; } // return xor value of minimum bit difference value // so we get minimum xor value return key ^ temp->value; } // Returns minimum xor value of pair in arr[0..n-1] int minXOR(int arr[], int n) { int min_xor = INT_MAX; // Initialize result // create a True and insert first element in it TrieNode* root = getNode(); insert(root, arr[0]); // Traverse all array element and find minimum xor // for every element for (int i = 1; i < n; i++) { // Find minimum XOR value of current element with // previous elements inserted in Trie min_xor = min(min_xor, minXORUtil(root, arr[i])); // insert current array value into Trie insert(root, arr[i]); } return min_xor; } // Driver code int main() { int arr[] = { 9, 5, 3 }; int n = sizeof(arr) / sizeof(arr[0]); cout << minXOR(arr, n) << endl; return 0; }
Java
// Java program to find minimum XOR value in an array. class GFG { static final int INT_SIZE = 32; // A Trie Node static class TrieNode { int value; // used in leaf node TrieNode[] Child = new TrieNode[2]; public TrieNode() { value = 0; Child[0] = null; Child[1] = null; } } static TrieNode root; // utility function insert new key in trie static void insert(int key) { TrieNode temp = root; // start from the most significant bit, insert all // bit of key one-by-one into trie for (int i = INT_SIZE - 1; i >= 0; i--) { // Find current bit in given prefix int current_bit = (key & (1 << i)) >= 1 ? 1 : 0; // Add a new Node into trie if (temp != null && temp.Child[current_bit] == null) temp.Child[current_bit] = new TrieNode(); temp = temp.Child[current_bit]; } // store value at leafNode temp.value = key; } // Returns minimum XOR value of an integer inserted // in Trie and given key. static int minXORUtil(int key) { TrieNode temp = root; for (int i = INT_SIZE - 1; i >= 0; i--) { // Find current bit in given prefix int current_bit = (key & (1 << i)) >= 1 ? 1 : 0; // Traversal Trie, look for prefix that has // same bit if (temp.Child[current_bit] != null) temp = temp.Child[current_bit]; // if there is no same bit.then looking for // opposite bit else if (temp.Child[1 - current_bit] != null) temp = temp.Child[1 - current_bit]; } // return xor value of minimum bit difference value // so we get minimum xor value return key ^ temp.value; } // Returns minimum xor value of pair in arr[0..n-1] static int minXOR(int arr[], int n) { int min_xor = Integer.MAX_VALUE; // Initialize result // create a True and insert first element in it root = new TrieNode(); insert(arr[0]); // Traverse all array element and find minimum xor // for every element for (int i = 1; i < n; i++) { // Find minimum XOR value of current element with // previous elements inserted in Trie min_xor = Math.min(min_xor, minXORUtil(arr[i])); // insert current array value into Trie insert(arr[i]); } return min_xor; } // Driver code public static void main(String args[]) { int arr[] = { 9, 5, 3 }; int n = arr.length; System.out.println(minXOR(arr, n)); } } // This code is contributed by Sumit Ghosh
Python
# class for the basic Trie Node class TrieNode: def __init__(self): # Child array with 0 and 1 self.child = [None]*2 # meant for the lead Node self.value = None class Trie: def __init__(self): # initialise the root Node self.root = self.getNode() def getNode(self): # get a new Trie Node return TrieNode() # inserts a new element def insert(self,key): temp = self.root # 32 bit valued binary digit for i in range(31,-1,-1): # finding the bit at ith position curr = (key>>i)&(1) # if the child is None create one if(temp.child[curr] is None): temp.child[curr] = self.getNode() temp = temp.child[curr] # add value to the leaf node temp.value = key # traverse the trie and xor with the most similar element def xorUtil(self,key): temp = self.root # 32 bit valued binary digit for i in range(31,-1,-1): # finding the bit at ith position curr = (key>>i)&1 # traverse for the same bit if(temp.child[curr] is not None): temp = temp.child[curr] # traverse if the same bit is not set in trie else if(temp.child[1-curr] is not None): temp = temp.child[1-curr] # return with the xor of the value return temp.value^key def minXor(arr): # set m to a large number m = 2**30 # initialize Trie trie = Trie() # insert the first element trie.insert(arr[0]) # for each element in the array for i in range(1,len(arr)): # find the minimum xor value m = min(m,trie.xorUtil(arr[i])) # insert the new element trie.insert(arr[i]) return m # Driver Code if __name__=="__main__": sample = [9,5,3] print(minXor(sample)) #code contributed by Ashwin Bhat
6
Tiempo Complejidad O(n)
Este artículo es una contribución de Nishant_Singh (Pintu) . Si te gusta GeeksforGeeks y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA