Dada una array binaria de tamaño NxN, donde 1 indica que el número i se puede convertir en j y 0 indica que no se puede convertir. También se dan dos números X(<N) e Y(<N), la tarea es encontrar el número mínimo de pasos requeridos para convertir el número X a Y. Si no es posible, imprima -1.
Ejemplos:
Input: {{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} { 0, 0, 0, 0, 1, 0, 0, 0, 0, 0} { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1} { 0, 0, 0, 1, 0, 0, 0, 0, 0, 0} { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} { 0, 1, 0, 0, 0, 0, 0, 0, 0, 0} { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}} X = 2, Y = 3 Output: 2 Convert 2 -> 4 -> 3, which is the minimum way possible. Input: {{ 0, 0, 0, 0} { 0, 0, 0, 1} { 0, 0, 0, 0} { 0, 1, 0, 0}} X = 1, Y = 2 Output: -1
Enfoque: este problema es una variante del algoritmo de Floyd-warshall donde hay un borde de peso 1 entre i y j ie mat[i][j]==1 , de lo contrario no tienen un borde y podemos asignar bordes tan infinito como lo hacemos en Floyd-Warshall. Encuentre la array solución y devuelva dp[i][j] si no es infinita. Devuelve -1 si es infinito, lo que significa que no hay camino posible entre ellos.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the above approach #include <bits/stdc++.h> using namespace std; #define INF 99999 #define size 10 int findMinimumSteps(int mat[size][size], int x, int y, int n) { // dist[][] will be the output matrix that // will finally have the shortest // distances between every pair of numbers int dist[n][n], i, j, k; // Initially same as mat for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { if (mat[i][j] == 0) dist[i][j] = INF; else dist[i][j] = 1; if (i == j) dist[i][j] = 1; } } // Add all numbers one by one to the set // of intermediate numbers. Before start of // an iteration, we have shortest distances // between all pairs of numbers such that the // shortest distances consider only the numbers // in set {0, 1, 2, .. k-1} as intermediate numbers. // After the end of an iteration, vertex no. k is // added to the set of intermediate numbers and // the set becomes {0, 1, 2, .. k} for (k = 0; k < n; k++) { // Pick all numbers as source one by one for (i = 0; i < n; i++) { // Pick all numbers as destination for the // above picked source for (j = 0; j < n; j++) { // If number k is on the shortest path from // i to j, then update the value of dist[i][j] if (dist[i][k] + dist[k][j] < dist[i][j]) dist[i][j] = dist[i][k] + dist[k][j]; } } } // If no path if (dist[x][y] < INF) return dist[x][y]; else return -1; } // Driver Code int main() { int mat[size][size] = { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }, { 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 } }; int x = 2, y = 3; cout << findMinimumSteps(mat, x, y, size); }
Java
// Java implementation of the above approach class GFG { static int INF=99999; static int findMinimumSteps(int mat[][], int x, int y, int n) { // dist[][] will be the output matrix that // will finally have the shortest // distances between every pair of numbers int i, j, k; int [][] dist= new int[n][n]; // Initially same as mat for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { if (mat[i][j] == 0) dist[i][j] = INF; else dist[i][j] = 1; if (i == j) dist[i][j] = 1; } } // Add all numbers one by one to the set // of intermediate numbers. Before start of // an iteration, we have shortest distances // between all pairs of numbers such that the // shortest distances consider only the numbers // in set {0, 1, 2, .. k-1} as intermediate numbers. // After the end of an iteration, vertex no. k is // added to the set of intermediate numbers and // the set becomes {0, 1, 2, .. k} for (k = 0; k < n; k++) { // Pick all numbers as source one by one for (i = 0; i < n; i++) { // Pick all numbers as destination for the // above picked source for (j = 0; j < n; j++) { // If number k is on the shortest path from // i to j, then update the value of dist[i][j] if (dist[i][k] + dist[k][j] < dist[i][j]) dist[i][j] = dist[i][k] + dist[k][j]; } } } // If no path if (dist[x][y] < INF) return dist[x][y]; else return -1; } // Driver Code public static void main(String []args) { int [][] mat = { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }, { 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 } }; int x = 2, y = 3; int size=mat.length; System.out.println( findMinimumSteps(mat, x, y, size)); } } // This code is contributed by ihritik
Python3
# Python3 implementation of the above approach INF = 99999 size = 10 def findMinimumSteps(mat, x, y, n): # dist[][] will be the output matrix # that will finally have the shortest # distances between every pair of numbers dist = [[0 for i in range(n)] for i in range(n)] i, j, k = 0, 0, 0 # Initially same as mat for i in range(n): for j in range(n): if (mat[i][j] == 0): dist[i][j] = INF else: dist[i][j] = 1 if (i == j): dist[i][j] = 1 # Add all numbers one by one to the set # of intermediate numbers. Before start # of an iteration, we have shortest distances # between all pairs of numbers such that the # shortest distances consider only the numbers # in set {0, 1, 2, .. k-1} as intermediate # numbers. After the end of an iteration, vertex # no. k is added to the set of intermediate # numbers and the set becomes {0, 1, 2, .. k} for k in range(n): # Pick all numbers as source one by one for i in range(n): # Pick all numbers as destination # for the above picked source for j in range(n): # If number k is on the shortest path from # i to j, then update the value of dist[i][j] if (dist[i][k] + dist[k][j] < dist[i][j]): dist[i][j] = dist[i][k] + dist[k][j] # If no path if (dist[x][y] < INF): return dist[x][y] else: return -1 # Driver Code mat = [[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ], [ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ]] x, y = 2, 3 print(findMinimumSteps(mat, x, y, size)) # This code is contributed by Mohit kumar 29
C#
// C# implementation of the above approach using System; class GFG { static int INF=99999; static int findMinimumSteps(int [,]mat, int x, int y, int n) { // dist[][] will be the output matrix that // will finally have the shortest // distances between every pair of numbers int i, j, k; int [,] dist= new int[n,n]; // Initially same as mat for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { if (mat[i,j] == 0) dist[i,j] = INF; else dist[i,j] = 1; if (i == j) dist[i,j] = 1; } } // Add all numbers one by one to the set // of intermediate numbers. Before start of // an iteration, we have shortest distances // between all pairs of numbers such that the // shortest distances consider only the numbers // in set {0, 1, 2, .. k-1} as intermediate numbers. // After the end of an iteration, vertex no. k is // added to the set of intermediate numbers and // the set becomes {0, 1, 2, .. k} for (k = 0; k < n; k++) { // Pick all numbers as source one by one for (i = 0; i < n; i++) { // Pick all numbers as destination for the // above picked source for (j = 0; j < n; j++) { // If number k is on the shortest path from // i to j, then update the value of dist[i][j] if (dist[i,k] + dist[k,j] < dist[i,j]) dist[i,j] = dist[i,k] + dist[k,j]; } } } // If no path if (dist[x,y] < INF) return dist[x,y]; else return -1; } // Driver Code public static void Main() { int [,] mat = { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }, { 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 } }; int x = 2, y = 3; int size = mat.GetLength(0) ; Console.WriteLine( findMinimumSteps(mat, x, y, size)); } // This code is contributed by Ryuga }
Javascript
<script> // JavaScript implementation of the above approach var INF=99999; function findMinimumSteps(mat , x , y , n) { // dist will be the output matrix that // will finally have the shortest // distances between every pair of numbers var i, j, k; var dist= Array(n).fill().map(()=>Array(n).fill(0)); // Initially same as mat for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { if (mat[i][j] == 0) dist[i][j] = INF; else dist[i][j] = 1; if (i == j) dist[i][j] = 1; } } // Add all numbers one by one to the set // of intermediate numbers. Before start of // an iteration, we have shortest distances // between all pairs of numbers such that the // shortest distances consider only the numbers // in set {0, 1, 2, .. k-1} as intermediate numbers. // After the end of an iteration, vertex no. k is // added to the set of intermediate numbers and // the set becomes {0, 1, 2, .. k} for (k = 0; k < n; k++) { // Pick all numbers as source one by one for (i = 0; i < n; i++) { // Pick all numbers as destination for the // above picked source for (j = 0; j < n; j++) { // If number k is on the // shortest path from // i to j, then update the // value of dist[i][j] if (dist[i][k] + dist[k][j] < dist[i][j]) dist[i][j] = dist[i][k] + dist[k][j]; } } } // If no path if (dist[x][y] < INF) return dist[x][y]; else return -1; } // Driver Code var mat = [[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ], [ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ] ]; var x = 2, y = 3; var size=mat.length; document.write( findMinimumSteps(mat, x, y, size)); // This code contributed by Rajput-Ji </script>
2
Complejidad de tiempo: O(N 3 ), ya que estamos usando bucles anidados para atravesar N 3 veces.
Espacio auxiliar: O(N 2 ), ya que estamos usando espacio extra para la array dist .