Dada una mat[][] de array 2d que consta de números enteros positivos, la tarea es encontrar el número mínimo de pasos necesarios para llegar al final de la array. Si estamos en la celda (i, j) podemos ir a las celdas (i, j + arr[i][j]) o (i + arr[i][j], j) . No podemos salirnos de los límites. Si no existe una ruta, imprima -1 .
Ejemplos:
Entrada: mat[][] = {
{2, 1, 2},
{1, 1, 1},
{1, 1, 1}}
Salida: 2
La ruta será {0, 0} -> {0, 2} -> {2, 2}
Por lo tanto, estamos llegando allí en dos pasos.
Entrada: mat[][] = {
{1, 1, 1},
{1, 1, 1},
{1, 1, 1}}
Salida: 4
Enfoque: Ya hemos discutido un enfoque basado en programación dinámica para este problema en este artículo. Este problema también se puede resolver utilizando la búsqueda primero en amplitud (BFS) .
El algoritmo es como sigue:
- Empuje (0, 0) en una cola.
- Traverse (0, 0), es decir, empuja todas las celdas que puede visitar en la cola.
- Repita los pasos anteriores, es decir, vuelva a recorrer todos los elementos de la cola individualmente si no se han visitado/recorrido antes.
- Repita hasta que no lleguemos a la celda (N-1, N-1).
- La profundidad de este recorrido dará los pasos mínimos necesarios para llegar al final.
Recuerde marcar una celda visitada después de haberla recorrido. Para esto, usaremos una array booleana 2D.
¿Por qué funciona BFS?
- Todo este escenario puede considerarse equivalente a un gráfico dirigido en el que cada celda está conectada como máximo a dos celdas más ({i, j+arr[i][j]} y {i+arr[i][j], j}).
- El gráfico no está ponderado. BFS puede encontrar el camino más corto en tales escenarios.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> #define n 3 using namespace std; // Function to return the minimum steps // required to reach the end of the matrix int minSteps(int arr[][n]) { // Array to determine whether // a cell has been visited before bool v[n][n] = { 0 }; // Queue for bfs queue<pair<int, int> > q; // Initializing queue q.push({ 0, 0 }); // To store the depth of search int depth = 0; // BFS algorithm while (q.size() != 0) { // Current queue size int x = q.size(); while (x--) { // Top-most element of queue pair<int, int> y = q.front(); // To store index of cell // for simplicity int i = y.first, j = y.second; q.pop(); // Base case if (v[i][j]) continue; // If we reach (n-1, n-1) if (i == n - 1 && j == n - 1) return depth; // Marking the cell visited v[i][j] = 1; // Pushing the adjacent cells in the // queue that can be visited // from the current cell if (i + arr[i][j] < n) q.push({ i + arr[i][j], j }); if (j + arr[i][j] < n) q.push({ i, j + arr[i][j] }); } depth++; } return -1; } // Driver code int main() { int arr[n][n] = { { 1, 1, 1 }, { 1, 1, 1 }, { 1, 1, 1 } }; cout << minSteps(arr); return 0; }
Java
// Java implementation of the approach import java.util.*; class GFG { static int n= 3 ; static class Pair { int first , second; Pair(int a, int b) { first = a; second = b; } } // Function to return the minimum steps // required to reach the end of the matrix static int minSteps(int arr[][]) { // Array to determine whether // a cell has been visited before boolean v[][] = new boolean[n][n]; // Queue for bfs Queue<Pair> q = new LinkedList<Pair>(); // Initializing queue q.add(new Pair( 0, 0 )); // To store the depth of search int depth = 0; // BFS algorithm while (q.size() != 0) { // Current queue size int x = q.size(); while (x-->0) { // Top-most element of queue Pair y = q.peek(); // To store index of cell // for simplicity int i = y.first, j = y.second; q.remove(); // Base case if (v[i][j]) continue; // If we reach (n-1, n-1) if (i == n - 1 && j == n - 1) return depth; // Marking the cell visited v[i][j] = true; // Pushing the adjacent cells in the // queue that can be visited // from the current cell if (i + arr[i][j] < n) q.add(new Pair( i + arr[i][j], j )); if (j + arr[i][j] < n) q.add(new Pair( i, j + arr[i][j] )); } depth++; } return -1; } // Driver code public static void main(String args[]) { int arr[][] = { { 1, 1, 1 }, { 1, 1, 1 }, { 1, 1, 1 } }; System.out.println(minSteps(arr)); } } // This code is contributed by Arnab Kundu
Python3
# Python 3 implementation of the approach n = 3 # Function to return the minimum steps # required to reach the end of the matrix def minSteps(arr): # Array to determine whether # a cell has been visited before v = [[0 for i in range(n)] for j in range(n)] # Queue for bfs q = [[0,0]] # To store the depth of search depth = 0 # BFS algorithm while (len(q) != 0): # Current queue size x = len(q) while (x > 0): # Top-most element of queue y = q[0] # To store index of cell # for simplicity i = y[0] j = y[1] q.remove(q[0]) x -= 1 # Base case if (v[i][j]): continue # If we reach (n-1, n-1) if (i == n - 1 and j == n - 1): return depth # Marking the cell visited v[i][j] = 1 # Pushing the adjacent cells in the # queue that can be visited # from the current cell if (i + arr[i][j] < n): q.append([i + arr[i][j], j]) if (j + arr[i][j] < n): q.append([i, j + arr[i][j]]) depth += 1 return -1 # Driver code if __name__ == '__main__': arr = [[1, 1, 1], [1, 1, 1], [1, 1, 1]] print(minSteps(arr)) # This code is contributed by # Surendra_Gangwar
C#
// C# implementation of the approach using System; using System.Collections.Generic; class GFG { static int n= 3 ; public class Pair { public int first , second; public Pair(int a, int b) { first = a; second = b; } } // Function to return the minimum steps // required to reach the end of the matrix static int minSteps(int [,]arr) { // Array to determine whether // a cell has been visited before Boolean [,]v = new Boolean[n,n]; // Queue for bfs Queue<Pair> q = new Queue<Pair>(); // Initializing queue q.Enqueue(new Pair( 0, 0 )); // To store the depth of search int depth = 0; // BFS algorithm while (q.Count != 0) { // Current queue size int x = q.Count; while (x-->0) { // Top-most element of queue Pair y = q.Peek(); // To store index of cell // for simplicity int i = y.first, j = y.second; q.Dequeue(); // Base case if (v[i,j]) continue; // If we reach (n-1, n-1) if (i == n - 1 && j == n - 1) return depth; // Marking the cell visited v[i,j] = true; // Pushing the adjacent cells in the // queue that can be visited // from the current cell if (i + arr[i,j] < n) q.Enqueue(new Pair( i + arr[i,j], j )); if (j + arr[i,j] < n) q.Enqueue(new Pair( i, j + arr[i,j] )); } depth++; } return -1; } // Driver code public static void Main() { int [,]arr = { { 1, 1, 1 }, { 1, 1, 1 }, { 1, 1, 1 } }; Console.WriteLine(minSteps(arr)); } } // This code contributed by Rajput-Ji
Javascript
<script> // Javascript implementation of the approach var n = 3; // Function to return the minimum steps // required to reach the end of the matrix function minSteps(arr) { // Array to determine whether // a cell has been visited before var v = Array.from(Array(n), ()=> Array(n).fill(0)); // Queue for bfs var q = []; // Initializing queue q.push([0, 0 ]); // To store the depth of search var depth = 0; // BFS algorithm while (q.length != 0) { // Current queue size var x = q.length; while (x--) { // Top-most element of queue var y = q[0]; // To store index of cell // for simplicity var i = y[0], j = y[1]; q.shift(); // Base case if (v[i][j]) continue; // If we reach (n-1, n-1) if (i == n - 1 && j == n - 1) return depth; // Marking the cell visited v[i][j] = 1; // Pushing the adjacent cells in the // queue that can be visited // from the current cell if (i + arr[i][j] < n) q.push([ i + arr[i][j], j ]); if (j + arr[i][j] < n) q.push([i, j + arr[i][j] ]); } depth++; } return -1; } // Driver code var arr = [ [ 1, 1, 1 ], [ 1, 1, 1 ], [ 1, 1, 1 ] ]; document.write( minSteps(arr)); </script>
4
Complejidad temporal: O(n 2 )
Publicación traducida automáticamente
Artículo escrito por DivyanshuShekhar1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA