Pasos mínimos para alcanzar el objetivo por un Caballero | Serie 1

Dado un tablero de ajedrez cuadrado de tamaño N x N, se da la posición del caballo y la posición de un objetivo. Necesitamos averiguar los pasos mínimos que dará un Caballero para alcanzar la posición objetivo.
Ejemplos: 
 

In above diagram Knight takes 3 step to reach 
from (4, 5) to (1, 1) (4, 5) -> (5, 3) -> (3, 2) 
-> (1, 1)  as shown in diagram

Enfoque: 
este problema puede verse como el camino más corto en un gráfico no ponderado. Por lo tanto, usamos BFS para resolver este problema. Probamos las 8 posiciones posibles a las que un caballo puede llegar desde su posición. Si la posición alcanzable aún no se ha visitado y está dentro del tablero, empujamos este estado a la cola con una distancia 1 más que su estado principal. Finalmente, devolvemos la distancia de la posición objetivo, cuando sale de la cola.
El siguiente código implementa BFS para buscar en las celdas, donde cada celda contiene su coordenada y la distancia desde el Node inicial. En el peor de los casos, el siguiente código visita todas las celdas del tablero, lo que hace que la complejidad del tiempo en el peor de los casos sea O (N ^ 2) 
 

C++

// C++ program to find minimum steps to reach to
// specific cell in minimum moves by Knight
#include <bits/stdc++.h>
using namespace std;
 
// structure for storing a cell's data
struct cell {
    int x, y;
    int dis;
    cell() {}
    cell(int x, int y, int dis)
        : x(x), y(y), dis(dis)
    {
    }
};
 
// Utility method returns true if (x, y) lies
// inside Board
bool isInside(int x, int y, int N)
{
    if (x >= 1 && x <= N && y >= 1 && y <= N)
        return true;
    return false;
}
 
// Method returns minimum step
// to reach target position
int minStepToReachTarget(
    int knightPos[], int targetPos[],
    int N)
{
    // x and y direction, where a knight can move
    int dx[] = { -2, -1, 1, 2, -2, -1, 1, 2 };
    int dy[] = { -1, -2, -2, -1, 1, 2, 2, 1 };
 
    // queue for storing states of knight in board
    queue<cell> q;
 
    // push starting position of knight with 0 distance
    q.push(cell(knightPos[0], knightPos[1], 0));
 
    cell t;
    int x, y;
    bool visit[N + 1][N + 1];
 
    // make all cell unvisited
    for (int i = 1; i <= N; i++)
        for (int j = 1; j <= N; j++)
            visit[i][j] = false;
 
    // visit starting state
    visit[knightPos[0]][knightPos[1]] = true;
 
    // loop until we have one element in queue
    while (!q.empty()) {
        t = q.front();
        q.pop();
 
        // if current cell is equal to target cell,
        // return its distance
        if (t.x == targetPos[0] && t.y == targetPos[1])
            return t.dis;
 
        // loop for all reachable states
        for (int i = 0; i < 8; i++) {
            x = t.x + dx[i];
            y = t.y + dy[i];
 
            // If reachable state is not yet visited and
            // inside board, push that state into queue
            if (isInside(x, y, N) && !visit[x][y]) {
                visit[x][y] = true;
                q.push(cell(x, y, t.dis + 1));
            }
        }
    }
}
 
// Driver code to test above methods
int main()
{
    int N = 30;
    int knightPos[] = { 1, 1 };
    int targetPos[] = { 30, 30 };
    cout << minStepToReachTarget(knightPos, targetPos, N);
    return 0;
}

Java

import java.util.*;
 
// Java program to find minimum steps to reach to
// specific cell in minimum moves by Knight
class GFG {
 
    // Class for storing a cell's data
    static class cell {
        int x, y;
        int dis;
 
        public cell(int x, int y, int dis)
        {
            this.x = x;
            this.y = y;
            this.dis = dis;
        }
    }
 
    // Utility method returns true if (x, y) lies
    // inside Board
    static boolean isInside(int x, int y, int N)
    {
        if (x >= 1 && x <= N && y >= 1 && y <= N)
            return true;
        return false;
    }
 
    // Method returns minimum step
    // to reach target position
    static int minStepToReachTarget(
        int knightPos[], int targetPos[],
        int N)
    {
        // x and y direction, where a knight can move
        int dx[] = { -2, -1, 1, 2, -2, -1, 1, 2 };
        int dy[] = { -1, -2, -2, -1, 1, 2, 2, 1 };
 
        // queue for storing states of knight in board
        Vector<cell> q = new Vector<>();
 
        // push starting position of knight with 0 distance
        q.add(new cell(knightPos[0], knightPos[1], 0));
 
        cell t;
        int x, y;
        boolean visit[][] = new boolean[N + 1][N + 1]; //default initialized to false
     
        // visit starting state
        visit[knightPos[0]][knightPos[1]] = true;
 
        // loop until we have one element in queue
        while (!q.isEmpty()) {
            t = q.firstElement();
            q.remove(0);
 
            // if current cell is equal to target cell,
            // return its distance
            if (t.x == targetPos[0] && t.y == targetPos[1])
                return t.dis;
 
            // loop for all reachable states
            for (int i = 0; i < 8; i++) {
                x = t.x + dx[i];
                y = t.y + dy[i];
 
                // If reachable state is not yet visited and
                // inside board, push that state into queue
                if (isInside(x, y, N) && !visit[x][y]) {
                    visit[x][y] = true;
                    q.add(new cell(x, y, t.dis + 1));
                }
            }
        }
        return Integer.MAX_VALUE;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int N = 30;
        int knightPos[] = { 1, 1 };
        int targetPos[] = { 30, 30 };
        System.out.println(
            minStepToReachTarget(
                knightPos, targetPos, N));
    }
}
 
// This code contributed by Rajput-Ji

Python3

# Python3 code to find minimum steps to reach
# to specific cell in minimum moves by Knight
class cell:
     
    def __init__(self, x = 0, y = 0, dist = 0):
        self.x = x
        self.y = y
        self.dist = dist
         
# checks whether given position is
# inside the board
def isInside(x, y, N):
    if (x >= 1 and x <= N and
        y >= 1 and y <= N):
        return True
    return False
     
# Method returns minimum step to reach
# target position
def minStepToReachTarget(knightpos,
                         targetpos, N):
     
    # all possible movements for the knight
    dx = [2, 2, -2, -2, 1, 1, -1, -1]
    dy = [1, -1, 1, -1, 2, -2, 2, -2]
     
    queue = []
     
    # push starting position of knight
    # with 0 distance
    queue.append(cell(knightpos[0], knightpos[1], 0))
     
    # make all cell unvisited
    visited = [[False for i in range(N + 1)]
                      for j in range(N + 1)]
     
    # visit starting state
    visited[knightpos[0]][knightpos[1]] = True
     
    # loop until we have one element in queue
    while(len(queue) > 0):
         
        t = queue[0]
        queue.pop(0)
         
        # if current cell is equal to target
        # cell, return its distance
        if(t.x == targetpos[0] and
           t.y == targetpos[1]):
            return t.dist
             
        # iterate for all reachable states
        for i in range(8):
             
            x = t.x + dx[i]
            y = t.y + dy[i]
             
            if(isInside(x, y, N) and not visited[x][y]):
                visited[x][y] = True
                queue.append(cell(x, y, t.dist + 1))
 
# Driver Code    
if __name__=='__main__':
    N = 30
    knightpos = [1, 1]
    targetpos = [30, 30]
    print(minStepToReachTarget(knightpos,
                               targetpos, N))
     
# This code is contributed by
# Kaustav kumar Chanda

C#

// C# program to find minimum steps to reach to
// specific cell in minimum moves by Knight
using System;
using System.Collections.Generic;
 
class GFG {
 
    // Class for storing a cell's data
    public class cell {
        public int x, y;
        public int dis;
 
        public cell(int x, int y, int dis)
        {
            this.x = x;
            this.y = y;
            this.dis = dis;
        }
    }
 
    // Utility method returns true
    // if (x, y) lies inside Board
    static bool isInside(int x, int y, int N)
    {
        if (x >= 1 && x <= N && y >= 1 && y <= N)
            return true;
        return false;
    }
 
    // Method returns minimum step
    // to reach target position
    static int minStepToReachTarget(int[] knightPos,
                                    int[] targetPos, int N)
    {
        // x and y direction, where a knight can move
        int[] dx = { -2, -1, 1, 2, -2, -1, 1, 2 };
        int[] dy = { -1, -2, -2, -1, 1, 2, 2, 1 };
 
        // queue for storing states of knight in board
        Queue<cell> q = new Queue<cell>();
 
        // push starting position of knight with 0 distance
        q.Enqueue(new cell(knightPos[0],
                           knightPos[1], 0));
 
        cell t;
        int x, y;
        bool[, ] visit = new bool[N + 1, N + 1];
 
        // make all cell unvisited
        for (int i = 1; i <= N; i++)
            for (int j = 1; j <= N; j++)
                visit[i, j] = false;
 
        // visit starting state
        visit[knightPos[0], knightPos[1]] = true;
 
        // loop until we have one element in queue
        while (q.Count != 0) {
            t = q.Peek();
            q.Dequeue();
 
            // if current cell is equal to target cell,
            // return its distance
            if (t.x == targetPos[0] && t.y == targetPos[1])
                return t.dis;
 
            // loop for all reachable states
            for (int i = 0; i < 8; i++) {
                x = t.x + dx[i];
                y = t.y + dy[i];
 
                // If reachable state is not yet visited and
                // inside board, push that state into queue
                if (isInside(x, y, N) && !visit[x, y]) {
                    visit[x, y] = true;
                    q.Enqueue(new cell(x, y, t.dis + 1));
                }
            }
        }
        return int.MaxValue;
    }
 
    // Driver code
    public static void Main(String[] args)
    {
        int N = 30;
        int[] knightPos = { 1, 1 };
        int[] targetPos = { 30, 30 };
        Console.WriteLine(
            minStepToReachTarget(
                knightPos,
                targetPos, N));
    }
}
// This code is contributed by 29AjayKumar

Javascript

<script>
// Javascript program to find minimum steps to reach to
// specific cell in minimum moves by Knight
 
// Class for storing a cell's data
class cell
{
    constructor(x,y,dis)
    {
        this.x = x;
            this.y = y;
            this.dis = dis;
    }
}
 
// Utility method returns true if (x, y) lies
    // inside Board
function isInside(x,y,N)
{
    if (x >= 1 && x <= N && y >= 1 && y <= N)
            return true;
        return false;
}
 
// Method returns minimum step
    // to reach target position
function minStepToReachTarget(knightPos,targetPos,N)
{
    // x and y direction, where a knight can move
        let dx = [ -2, -1, 1, 2, -2, -1, 1, 2 ];
        let dy = [ -1, -2, -2, -1, 1, 2, 2, 1 ];
   
        // queue for storing states of knight in board
        let q = [];
   
        // push starting position of knight with 0 distance
        q.push(new cell(knightPos[0], knightPos[1], 0));
   
        let t;
        let x, y;
        let visit = new Array(N + 1);
   
        // make all cell unvisited
        for (let i = 1; i <= N; i++)
        {
            visit[i]=new Array(N+1);
            for (let j = 1; j <= N; j++)
                visit[i][j] = false;
        }
   
        // visit starting state
        visit[knightPos[0]][knightPos[1]] = true;
   
        // loop until we have one element in queue
        while (q.length!=0) {
            t = q.shift();
             
   
            // if current cell is equal to target cell,
            // return its distance
            if (t.x == targetPos[0] && t.y == targetPos[1])
                return t.dis;
   
            // loop for all reachable states
            for (let i = 0; i < 8; i++) {
                x = t.x + dx[i];
                y = t.y + dy[i];
   
                // If reachable state is not yet visited and
                // inside board, push that state into queue
                if (isInside(x, y, N) && !visit[x][y]) {
                    visit[x][y] = true;
                    q.push(new cell(x, y, t.dis + 1));
                }
            }
        }
        return Number.MAX_VALUE;
}
 
// Driver code
let N = 30;
let knightPos=[1,1];
let targetPos=[30,30];
document.write(
            minStepToReachTarget(
                knightPos, targetPos, N));
 
 
// This code is contributed by rag2127
</script>

Producción: 
 

20

Análisis de Complejidad: 
 

  • Complejidad del tiempo: O(N^2). 
    En el peor de los casos, se visitarán todas las celdas, por lo que la complejidad del tiempo es O (N ^ 2).
  • Espacio auxiliar: O(N^2). 
    Los Nodes se almacenan en cola. Entonces la Complejidad del espacio es O(N^2).

Este artículo es una contribución de Utkarsh Trivedi . Si te gusta GeeksforGeeks y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks.
Escriba comentarios si encuentra algo incorrecto o si desea compartir más información sobre el tema tratado anteriormente.
 

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *