Dada una array de números enteros binarios, suponga que estos valores se mantienen en la circunferencia de un círculo a la misma distancia. Necesitamos saber si es posible dibujar un polígono regular usando solo 1 como vértices y, si es posible, imprimir el número máximo de lados que tiene ese polígono regular.
Ejemplo:
Input : arr[] = [1, 1, 1, 0, 1, 0] Output : Polygon possible with side length 3 We can draw a regular triangle having 1s as its vertices as shown in below diagram (a). Input : arr[] = [1, 0, 1, 0, 1, 0, 1, 0, 1, 1] Output : Polygon possible with side length 5 We can draw a regular pentagon having 1s as its vertices as shown in below diagram (b).
Podemos resolver este problema obteniendo una relación entre el número de vértices que puede tener un posible polígono y el número total de valores en la array. Deje que un posible polígono regular en el círculo tenga K vértices o K lados, entonces debería satisfacer dos cosas para ser la respuesta,
Si el tamaño de array dado es N, entonces K debe dividir N; de lo contrario, K vértices no pueden dividir N vértices de la misma manera para ser un polígono regular.
Lo siguiente es que debe haber uno en cada vértice del polígono elegido.
Después de los puntos anteriores, podemos ver que para resolver este problema necesitamos iterar sobre los divisores de N y luego verificar si cada valor de la array a la distancia del divisor elegido es 1 o no. Si es 1, entonces encontramos nuestra solución. Podemos iterar sobre todos los divisores en tiempo O(sqrt(N)) simplemente iterando de 1 a sqrt(N). Puedes leer más sobre eso aquí .
Implementación:
C++
// C++ program to find whether a regular polygon // is possible in circle with 1s as vertices #include <bits/stdc++.h> using namespace std; // method returns true if polygon is possible with // 'midpoints' number of midpoints bool checkPolygonWithMidpoints(int arr[], int N, int midpoints) { // loop for getting first vertex of polygon for (int j = 0; j < midpoints; j++) { int val = 1; // loop over array values at 'midpoints' distance for (int k = j; k < N; k += midpoints) { // and(&) all those values, if even one of // them is 0, val will be 0 val &= arr[k]; } /* if val is still 1 and (N/midpoints) or (number of vertices) are more than two (for a polygon minimum) print result and return true */ if (val && N/midpoints > 2) { cout << "Polygon possible with side length " <<(N/midpoints) << endl; return true; } } return false; } // method prints sides in the polygon or print not // possible in case of no possible polygon void isPolygonPossible(int arr[], int N) { // limit for iterating over divisors int limit = sqrt(N); for (int i = 1; i <= limit; i++) { // If i divides N then i and (N/i) will // be divisors if (N % i == 0) { // check polygon for both divisors if (checkPolygonWithMidpoints(arr, N, i) || checkPolygonWithMidpoints(arr, N, (N/i))) return; } } cout << "Not possiblen"; } // Driver code to test above methods int main() { int arr[] = {1, 0, 1, 0, 1, 0, 1, 0, 1, 1}; int N = sizeof(arr) / sizeof(arr[0]); isPolygonPossible(arr, N); return 0; }
Java
// Java program to find whether a regular polygon // is possible in circle with 1s as vertices class Test { // method returns true if polygon is possible with // 'midpoints' number of midpoints static boolean checkPolygonWithMidpoints(int arr[], int N, int midpoints) { // loop for getting first vertex of polygon for (int j = 0; j < midpoints; j++) { int val = 1; // loop over array values at 'midpoints' distance for (int k = j; k < N; k += midpoints) { // and(&) all those values, if even one of // them is 0, val will be 0 val &= arr[k]; } /* if val is still 1 and (N/midpoints) or (number of vertices) are more than two (for a polygon minimum) print result and return true */ if (val != 0 && N/midpoints > 2) { System.out.println("Polygon possible with side length " + N/midpoints); return true; } } return false; } // method prints sides in the polygon or print not // possible in case of no possible polygon static void isPolygonPossible(int arr[], int N) { // limit for iterating over divisors int limit = (int)Math.sqrt(N); for (int i = 1; i <= limit; i++) { // If i divides N then i and (N/i) will // be divisors if (N % i == 0) { // check polygon for both divisors if (checkPolygonWithMidpoints(arr, N, i) || checkPolygonWithMidpoints(arr, N, (N/i))) return; } } System.out.println("Not possible"); } // Driver method public static void main(String args[]) { int arr[] = {1, 0, 1, 0, 1, 0, 1, 0, 1, 1}; isPolygonPossible(arr, arr.length); } }
Python3
# Python3 program to find whether a # regular polygon is possible in circle # with 1s as vertices from math import sqrt # method returns true if polygon is # possible with 'midpoints' number # of midpoints def checkPolygonWithMidpoints(arr, N, midpoints) : # loop for getting first vertex of polygon for j in range(midpoints) : val = 1 # loop over array values at # 'midpoints' distance for k in range(j , N, midpoints) : # and(&) all those values, if even # one of them is 0, val will be 0 val &= arr[k] # if val is still 1 and (N/midpoints) or (number # of vertices) are more than two (for a polygon # minimum) print result and return true if (val and N // midpoints > 2) : print("Polygon possible with side length" , (N // midpoints)) return True return False # method prints sides in the polygon or print # not possible in case of no possible polygon def isPolygonPossible(arr, N) : # limit for iterating over divisors limit = sqrt(N) for i in range(1, int(limit) + 1) : # If i divides N then i and (N/i) # will be divisors if (N % i == 0) : # check polygon for both divisors if (checkPolygonWithMidpoints(arr, N, i) or checkPolygonWithMidpoints(arr, N, (N // i))): return print("Not possiblen") # Driver code if __name__ == "__main__" : arr = [1, 0, 1, 0, 1, 0, 1, 0, 1, 1] N = len(arr) isPolygonPossible(arr, N) # This code is contributed by Ryuga
C#
// C# program to find whether // a regular polygon is possible // in circle with 1s as vertices using System; class GFG { // method returns true if // polygon is possible // with 'midpoints' number // of midpoints static bool checkPolygonWithMidpoints(int []arr, int N, int midpoints) { // loop for getting first // vertex of polygon for (int j = 0; j < midpoints; j++) { int val = 1; // loop over array values // at 'midpoints' distance for (int k = j; k < N; k += midpoints) { // and(&) all those values, // if even one of them is 0, // val will be 0 val &= arr[k]; } /* if val is still 1 and (N/midpoints) or (number of vertices) are more than two (for a polygon minimum) print result and return true */ if (val != 0 && N / midpoints > 2) { Console.WriteLine("Polygon possible with " + "side length " + N / midpoints); return true; } } return false; } // method prints sides in the // polygon or print not possible // in case of no possible polygon static void isPolygonPossible(int []arr, int N) { // limit for iterating // over divisors int limit = (int)Math.Sqrt(N); for (int i = 1; i <= limit; i++) { // If i divides N then i // and (N/i) will be divisors if (N % i == 0) { // check polygon for // both divisors if (checkPolygonWithMidpoints(arr, N, i) || checkPolygonWithMidpoints(arr, N, (N / i))) return; } } Console.WriteLine("Not possible"); } // Driver Code static public void Main () { int []arr = {1, 0, 1, 0, 1, 0, 1, 0, 1, 1}; isPolygonPossible(arr, arr.Length); } } // This code is contributed by jit_t
PHP
<?php // PHP program to find whether // a regular polygon is possible // in circle with 1s as vertices // method returns true if polygon // is possible with 'midpoints' // number of midpoints function checkPolygonWithMidpoints($arr, $N, $midpoints) { // loop for getting first // vertex of polygon for ($j = 0; $j < $midpoints; $j++) { $val = 1; // loop over array values // at 'midpoints' distance for ($k = $j; $k < $N; $k += $midpoints) { // and(&) all those values, // if even one of them is 0, // val will be 0 $val &= $arr[$k]; } /* if val is still 1 and (N/midpoints) or (number of vertices) are more than two (for a polygon minimum) print result and return true */ if ($val && $N / $midpoints > 2) { echo "Polygon possible with side length " , ($N / $midpoints) , "\n"; return true; } } return false; } // method prints sides in // the polygon or print not // possible in case of no // possible polygon function isPolygonPossible($arr, $N) { // limit for iterating // over divisors $limit = sqrt($N); for ($i = 1; $i <= $limit; $i++) { // If i divides N then // i and (N/i) will be // divisors if ($N % $i == 0) { // check polygon for // both divisors if (checkPolygonWithMidpoints($arr, $N, $i) || checkPolygonWithMidpoints($arr, $N, ($N / $i))) return; } } echo "Not possiblen"; } // Driver Code $arr = array(1, 0, 1, 0, 1, 0, 1, 0, 1, 1); $N = sizeof($arr); isPolygonPossible($arr, $N); // This code is contributed by ajit ?>
Javascript
<script> // Javascript program to // find whether a regular polygon // is possible in circle with 1s as vertices // method returns true if polygon is possible with // 'midpoints' number of midpoints function checkPolygonWithMidpoints(arr, N, midpoints) { // loop for getting first vertex of polygon for (let j = 0; j < midpoints; j++) { let val = 1; // loop over array values at // 'midpoints' distance for (let k = j; k < N; k += midpoints) { // and(&) all those values, // if even one of // them is 0, val will be 0 val &= arr[k]; } /* if val is still 1 and (N/midpoints) or (number of vertices) are more than two (for a polygon minimum) print result and return true */ if (val && parseInt(N/midpoints) > 2) { document.write( "Polygon possible with side length " + parseInt(N/midpoints) + "<br>" ); return true; } } return false; } // method prints sides in the polygon or print not // possible in case of no possible polygon function isPolygonPossible(arr, N) { // limit for iterating over divisors let limit = Math.sqrt(N); for (let i = 1; i <= limit; i++) { // If i divides N then i and (N/i) will // be divisors if (N % i == 0) { // check polygon for both divisors if (checkPolygonWithMidpoints(arr, N, i) || checkPolygonWithMidpoints(arr, N, parseInt(N/i))) return; } } document.write("Not possible"); } // Driver code to test above methods let arr = [1, 0, 1, 0, 1, 0, 1, 0, 1, 1]; let N = arr.length; isPolygonPossible(arr, N); </script>
Polygon possible with side length 5
Complejidad de tiempo: O(sqrt(N) 2 )
Espacio auxiliar: O(1)
Este artículo es una contribución de Aarti_Rathi y Utkarsh Trivedi . Si te gusta GeeksforGeeks y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA