Dadas dos strings s y t . La tarea es encontrar la longitud máxima de algún prefijo de la string S que aparece en la string t como subsecuencia.
Ejemplos:
C++
// C++ program to find maximum // length prefix of one string // occur as subsequence in another // string. #include<bits/stdc++.h> using namespace std; // Return the maximum length // prefix which is subsequence. int maxPrefix(char s[], char t[]) { int count = 0; // Iterating string T. for (int i = 0; i < strlen(t); i++) { // If end of string S. if (count == strlen(s)) break; // If character match, // increment counter. if (t[i] == s[count]) count++; } return count; } // Driven Code int main() { char S[] = "digger"; char T[] = "biggerdiagram"; cout << maxPrefix(S, T) << endl; return 0; }
Java
// Java program to find maximum // length prefix of one string // occur as subsequence in another // string. public class GFG { // Return the maximum length // prefix which is subsequence. static int maxPrefix(String s, String t) { int count = 0; // Iterating string T. for (int i = 0; i < t.length(); i++) { // If end of string S. if (count == s.length()) break; // If character match, // increment counter. if (t.charAt(i) == s.charAt(count)) count++; } return count; } // Driver Code public static void main(String args[]) { String S = "digger"; String T = "biggerdiagram"; System.out.println(maxPrefix(S, T)); } } // This code is contributed by Sumit Ghosh
Python 3
# Python 3 program to find maximum # length prefix of one string occur # as subsequence in another string. # Return the maximum length # prefix which is subsequence. def maxPrefix(s, t) : count = 0 # Iterating string T. for i in range(0,len(t)) : # If end of string S. if (count == len(s)) : break # If character match, # increment counter. if (t[i] == s[count]) : count = count + 1 return count # Driver Code S = "digger" T = "biggerdiagram" print(maxPrefix(S, T)) # This code is contributed # by Nikita Tiwari.
C#
// C# program to find maximum // length prefix of one string // occur as subsequence in // another string. using System; class GFG { // Return the maximum length prefix // which is subsequence. static int maxPrefix(String s, String t) { int count = 0; // Iterating string T. for (int i = 0; i < t.Length; i++) { // If end of string S. if (count == s.Length) break; // If character match, // increment counter. if (t[i] == s[count]) count++; } return count; } // Driver Code public static void Main() { String S = "digger"; String T = "biggerdiagram"; Console.Write(maxPrefix(S, T)); } } // This code is contributed by nitin mittal
PHP
<?php // PHP program to find maximum // length prefix of one string // occur as subsequence in another // string. // Return the maximum length // prefix which is subsequence. function maxPrefix($s, $t) { $count = 0; // Iterating string T. for ($i = 0; $i < strlen($t); $i++) { // If end of string S. if ($count == strlen($s)) break; // If character match, // increment counter. if ($t[$i] == $s[$count]) $count++; } return $count; } // Driver Code { $S = "digger"; $T = "biggerdiagram"; echo maxPrefix($S, $T) ; return 0; } // This code is contributed by nitin mittal. ?>
Javascript
<script> // JavaScript program to find maximum // length prefix of one string // occur as subsequence in another // string. // Return the maximum length // prefix which is subsequence. function maxPrefix(s,t) { let count = 0; // Iterating string T. for (let i = 0; i < t.length; i++) { // If end of string S. if (count == s.length) break; // If character match, // increment counter. if (t[i] == s[count]) count++; } return count; } // Driver Code let S = "digger"; let T = "biggerdiagram"; document.write(maxPrefix(S, T)); </script>
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA