Dados los recorridos Inorder y Postorder de un árbol binario, imprima el recorrido Preorder.
Ejemplo:
Input: Postorder traversal post[] = {4, 5, 2, 6, 3, 1} Inorder traversal in[] = {4, 2, 5, 1, 3, 6} Output: Preorder traversal 1, 2, 4, 5, 3, 6 Traversals in the above example represents following tree 1 / \ 2 3 / \ \ 4 5 6
Un método ingenuo es construir primero el árbol a partir de postorder y inorder dados , luego usar un método recursivo simple para imprimir el recorrido preorder del árbol construido.
Podemos imprimir un recorrido de preorden sin construir el árbol . La idea es que la raíz es siempre el primer elemento en el recorrido previo al pedido y debe ser el último elemento en el recorrido posterior al pedido. Primero empujamos el subárbol derecho a una pila, luego el subárbol izquierdo y, finalmente, empujamos la raíz. Finalmente, imprimimos el contenido de la pila. Para encontrar los límites de los subárboles izquierdo y derecho en post[] e in[], buscamos la raíz en in[], todos los elementos antes de la raíz en in[] son elementos del subárbol izquierdo, y todos los elementos después de la raíz son elementos del subárbol derecho. En post[], todos los elementos después del índice de la raíz en in[] son elementos del subárbol derecho. Y los elementos antes del índice (incluido el elemento en el índice y excluyendo el primer elemento) son elementos del subárbol izquierdo.
C++
// C++ program to print Postorder traversal from given // Inorder and Preorder traversals. #include<bits/stdc++.h> using namespace std; int postIndex = 0; // A utility function to search data in in[] int search(int in[], int data,int n) { int i = 0; for (i = 0; i < n; i++) if (in[i] == data) return i; return i; } // Fills preorder traversal of tree with given // inorder and postorder traversals in a stack void fillPre(int in[], int post[], int inStrt, int inEnd, stack<int> &s,int n) { if (inStrt > inEnd) return; // Find index of next item in postorder traversal in // inorder. int val = post[postIndex]; int inIndex = search(in, val, n); postIndex--; // traverse right tree fillPre(in, post, inIndex + 1, inEnd, s, n); // traverse left tree fillPre(in, post, inStrt, inIndex - 1, s, n); s.push(val); } // This function basically initializes postIndex // as last element index, then fills stack with // reverse preorder traversal using printPre void printPreMain(int in[], int post[],int n) { int len = n; postIndex = len - 1; stack<int> s ; fillPre(in, post, 0, len - 1, s, n); while (s.size() > 0) { cout << s.top() << " "; s.pop(); } } // Driver code int main() { int in[] = { 4, 10, 12, 15, 18, 22, 24, 25, 31, 35, 44, 50, 66, 70, 90 }; int post[] = { 4, 12, 10, 18, 24, 22, 15, 31, 44, 35, 66, 90, 70, 50, 25 }; int n=sizeof(in)/sizeof(int); printPreMain(in, post,n); } // This code is contributed by Arnab Kundu
Java
// Java program to print Postorder traversal from given // Inorder and Preorder traversals. import java.util.Stack; public class PrintPre { static int postIndex; // Fills preorder traversal of tree with given // inorder and postorder traversals in a stack void fillPre(int[] in, int[] post, int inStrt, int inEnd, Stack<Integer> s) { if (inStrt > inEnd) return; // Find index of next item in postorder traversal in // inorder. int val = post[postIndex]; int inIndex = search(in, val); postIndex--; // traverse right tree fillPre(in, post, inIndex + 1, inEnd, s); // traverse left tree fillPre(in, post, inStrt, inIndex - 1, s); s.push(val); } // This function basically initializes postIndex // as last element index, then fills stack with // reverse preorder traversal using printPre void printPreMain(int[] in, int[] post) { int len = in.length; postIndex = len - 1; Stack<Integer> s = new Stack<Integer>(); fillPre(in, post, 0, len - 1, s); while (s.empty() == false) System.out.print(s.pop() + " "); } // A utility function to search data in in[] int search(int[] in, int data) { int i = 0; for (i = 0; i < in.length; i++) if (in[i] == data) return i; return i; } // Driver code public static void main(String ars[]) { int in[] = { 4, 10, 12, 15, 18, 22, 24, 25, 31, 35, 44, 50, 66, 70, 90 }; int post[] = { 4, 12, 10, 18, 24, 22, 15, 31, 44, 35, 66, 90, 70, 50, 25 }; PrintPre tree = new PrintPre(); tree.printPreMain(in, post); } }
Python3
# Python3 program to print Postorder traversal from given # Inorder and Preorder traversals. # A utility function to search data in in[] def search(inn, data,n): i = 0 while i < n : if (inn[i] == data): return i i += 1 return i # Fills preorder traversal of tree with given # inorder and postorder traversals in a stack def fillPre(inn, post, inStrt, inEnd, n): global s, postIndex if (inStrt > inEnd): return # Find index of next item in postorder traversal in # inorder. val = post[postIndex] inIndex = search(inn, val, n) postIndex -= 1 # traverse right tree fillPre(inn, post, inIndex + 1, inEnd, n) # traverse left tree fillPre(inn, post, inStrt, inIndex - 1, n) s.append(val) # This function basically initializes postIndex # as last element index, then fills stack with # reverse preorder traversal using printPre def printPreMain(inn, post, n): global s lenn = n postIndex = lenn - 1 fillPre(inn, post, 0, lenn - 1, n) while ( len(s) > 0): print(s[-1], end=" ") del s[-1] # Driver code if __name__ == '__main__': s,postIndex = [], 0 inn =[4, 10, 12, 15, 18, 22, 24, 25,31, 35, 44, 50, 66, 70, 90] post =[4, 12, 10, 18, 24, 22, 15, 31,44, 35, 66, 90, 70, 50, 25] n=len(inn) printPreMain(inn, post,n) # This code is contributed by divyeshrabadiya07
C#
// C# program to print Postorder traversal from given // Inorder and Preorder traversals. using System; using System.Collections.Generic; public class PrintPre { static int postIndex; // Fills preorder traversal of tree with given // inorder and postorder traversals in a stack void fillPre(int[] a, int[] post, int inStrt, int inEnd, Stack<int> s) { if (inStrt > inEnd) return; // Find index of next item in postorder traversal in // inorder. int val = post[postIndex]; int inIndex = search(a, val); postIndex--; // traverse right tree fillPre(a, post, inIndex + 1, inEnd, s); // traverse left tree fillPre(a, post, inStrt, inIndex - 1, s); s.Push(val); } // This function basically initializes postIndex // as last element index, then fills stack with // reverse preorder traversal using printPre void printPreMain(int[] a, int[] post) { int len = a.Length; postIndex = len - 1; Stack<int> s = new Stack<int>(); fillPre(a, post, 0, len - 1, s); while (s.Count!=0) Console.Write(s.Pop() + " "); } // A utility function to search data in in[] int search(int[] a, int data) { int i = 0; for (i = 0; i < a.Length; i++) if (a[i] == data) return i; return i; } // Driver code public static void Main(String []args) { int []a = { 4, 10, 12, 15, 18, 22, 24, 25, 31, 35, 44, 50, 66, 70, 90 }; int []post = { 4, 12, 10, 18, 24, 22, 15, 31, 44, 35, 66, 90, 70, 50, 25 }; PrintPre tree = new PrintPre(); tree.printPreMain(a, post); } } // This code has been contributed by 29AjayKumar
Javascript
<script> // JavaScript program to print // Postorder traversal from given // Inorder and Preorder traversals. let postIndex; // A utility function to search data in in[] function search(In,data) { let i = 0; for (i = 0; i < In.length; i++) if (In[i] == data) return i; return i; } // Fills preorder traversal of tree with given // inorder and postorder traversals in a stack function fillPre(In,post,inStrt,inEnd,s) { if (inStrt > inEnd) return; // Find index of next item // in postorder traversal in // inorder. let val = post[postIndex]; let inIndex = search(In, val); postIndex--; // traverse right tree fillPre(In, post, inIndex + 1, inEnd, s); // traverse left tree fillPre(In, post, inStrt, inIndex - 1, s); s.push(val); } // This function basically initializes postIndex // as last element index, then fills stack with // reverse preorder traversal using printPre function printPreMain(In,post) { let len = In.length; postIndex = len - 1; let s = []; fillPre(In, post, 0, len - 1, s); while (s.length!=0) document.write(s.pop() + " "); } // Driver code let In=[4, 10, 12, 15, 18, 22, 24, 25, 31, 35, 44, 50, 66, 70, 90 ]; let post=[4, 12, 10, 18, 24, 22, 15, 31, 44, 35, 66, 90, 70, 50, 25 ]; printPreMain(In, post); // This code is contributed by unknown2108 </script>
25 15 10 4 12 22 18 24 50 35 31 44 70 66 90
Complejidad de tiempo: la función anterior visita todos los Nodes de la array. Para cada visita, llama a la búsqueda que toma O (n) tiempo. Por lo tanto, la complejidad temporal total de la función es O(n 2 )
Solución O(n)
Podemos optimizar aún más la solución anterior para primero codificar todos los elementos del recorrido en orden para que no tengamos que buscar elementos linealmente. Con la tabla hash disponible para nosotros, podemos buscar un elemento en tiempo O (1).
C++
// C++ program to print Postorder traversal from // given Inorder and Preorder traversals. #include <bits/stdc++.h> using namespace std; int postIndex; // Fills preorder traversal of tree with given // inorder and postorder traversals in a stack void fillPre(int iN[], int post[], int inStrt, int inEnd, stack<int> &s, map<int, int> hm) { if (inStrt > inEnd) return; // Find index of next item in // postorder traversal in inorder. int val = post[postIndex]; int inIndex = hm[val]; postIndex--; // traverse right tree fillPre(iN, post, inIndex + 1, inEnd, s, hm); // traverse left tree fillPre(iN, post, inStrt, inIndex - 1, s, hm); s.push(val); } // This function basically initializes postIndex // as last element index, then fills stack with // reverse preorder traversal using printPre void printPreMain(int iN[], int post[], int N) { int len = N; postIndex = len - 1; stack<int> s; // Insert values in a hash map // and their indexes. map<int, int> hm; for (int i = 0; i < N; i++) hm[iN[i]] = i; // Fill preorder traversal in a stack fillPre(iN, post, 0, len - 1, s, hm); // Print contents of stack while (s.size() != 0) { cout << s.top() << " "; s.pop(); } } int main() { int iN[] = { 4, 10, 12, 15, 18, 22, 24, 25, 31, 35, 44, 50, 66, 70, 90 }; int N = sizeof(iN) / sizeof(iN[0]); int post[] = { 4, 12, 10, 18, 24, 22, 15, 31, 44, 35, 66, 90, 70, 50, 25 }; printPreMain(iN, post, N); return 0; } // This code is contributed by decode2207.
Java
// Java program to print Postorder traversal from given // Inorder and Preorder traversals. import java.util.Stack; import java.util.HashMap; public class PrintPre { static int postIndex; // Fills preorder traversal of tree with given // inorder and postorder traversals in a stack void fillPre(int[] in, int[] post, int inStrt, int inEnd, Stack<Integer> s, HashMap<Integer, Integer> hm) { if (inStrt > inEnd) return; // Find index of next item in postorder traversal in // inorder. int val = post[postIndex]; int inIndex = hm.get(val); postIndex--; // traverse right tree fillPre(in, post, inIndex + 1, inEnd, s, hm); // traverse left tree fillPre(in, post, inStrt, inIndex - 1, s, hm); s.push(val); } // This function basically initializes postIndex // as last element index, then fills stack with // reverse preorder traversal using printPre void printPreMain(int[] in, int[] post) { int len = in.length; postIndex = len - 1; Stack<Integer> s = new Stack<Integer>(); // Insert values in a hash map and their indexes. HashMap<Integer, Integer> hm = new HashMap<Integer, Integer>(); for (int i = 0; i < in.length; i++) hm.put(in[i], i); // Fill preorder traversal in a stack fillPre(in, post, 0, len - 1, s, hm); // Print contents of stack while (s.empty() == false) System.out.print(s.pop() + " "); } // Driver code public static void main(String ars[]) { int in[] = { 4, 10, 12, 15, 18, 22, 24, 25, 31, 35, 44, 50, 66, 70, 90 }; int post[] = { 4, 12, 10, 18, 24, 22, 15, 31, 44, 35, 66, 90, 70, 50, 25 }; PrintPre tree = new PrintPre(); tree.printPreMain(in, post); } }
Python3
# Python3 program to print Postorder traversal from given # Inorder and Preorder traversals. postIndex = 0 # Fills preorder traversal of tree with given # inorder and postorder traversals in a stack def fillPre(In, post, inStrt, inEnd, s, hm): global postIndex if(inStrt > inEnd): return # Find index of next item in postorder traversal in # inorder. val = post[postIndex] inIndex = hm[val] postIndex -= 1 # traverse right tree fillPre(In, post, inIndex + 1, inEnd, s, hm) # traverse left tree fillPre(In, post, inStrt, inIndex - 1, s, hm) s.append(val) # This function basically initializes postIndex # as last element index, then fills stack with # reverse preorder traversal using printPre def printPreMain(In, post): global postIndex Len = len(In) postIndex = Len - 1 s = [] # Insert values in a hash map and their indexes. hm = {} for i in range(len(In)): hm[In[i]] = i # Fill preorder traversal in a stack fillPre(In, post, 0, Len - 1, s, hm) # Print contents of stack while(len(s) > 0): print(s.pop(), end = " ") # Driver code In = [4, 10, 12, 15, 18, 22, 24, 25,31, 35, 44, 50, 66, 70, 90 ] post = [4, 12, 10, 18, 24, 22, 15, 31,44, 35, 66, 90, 70, 50, 25 ] printPreMain(In, post) # This code is contributed by avanitrachhadiya2155
C#
// C# program to print Postorder traversal from // given Inorder and Preorder traversals. using System; using System.Collections.Generic; class PrintPre { static int postIndex; // Fills preorder traversal of tree with given // inorder and postorder traversals in a stack void fillPre(int[] iN, int[] post, int inStrt, int inEnd, Stack<int> s, Dictionary<int, int> hm) { if (inStrt > inEnd) return; // Find index of next item in // postorder traversal in inorder. int val = post[postIndex]; int inIndex = hm[val]; postIndex--; // traverse right tree fillPre(iN, post, inIndex + 1, inEnd, s, hm); // traverse left tree fillPre(iN, post, inStrt, inIndex - 1, s, hm); s.Push(val); } // This function basically initializes postIndex // as last element index, then fills stack with // reverse preorder traversal using printPre void printPreMain(int[] iN, int[] post) { int len = iN.Length; postIndex = len - 1; Stack<int> s = new Stack<int>(); // Insert values in a hash map // and their indexes. Dictionary<int, int> hm = new Dictionary<int, int>(); for (int i = 0; i < iN.Length; i++) hm.Add(iN[i], i); // Fill preorder traversal in a stack fillPre(iN, post, 0, len - 1, s, hm); // Print contents of stack while (s.Count != 0) Console.Write(s.Pop() + " "); } // Driver code public static void Main(String []ars) { int []iN = { 4, 10, 12, 15, 18, 22, 24, 25, 31, 35, 44, 50, 66, 70, 90 }; int []post = { 4, 12, 10, 18, 24, 22, 15, 31, 44, 35, 66, 90, 70, 50, 25 }; PrintPre tree = new PrintPre(); tree.printPreMain(iN, post); } } // This code is contributed by Rajput-Ji
Javascript
<script> // Javascript program to print Postorder traversal from given // Inorder and Preorder traversals. let postIndex; // Fills preorder traversal of tree with given // inorder and postorder traversals in a stack function fillPre(In,post,inStrt,inEnd,s,hm) { if (inStrt > inEnd) return; // Find index of next item in postorder traversal in // inorder. let val = post[postIndex]; let inIndex = hm.get(val); postIndex--; // traverse right tree fillPre(In, post, inIndex + 1, inEnd, s, hm); // traverse left tree fillPre(In, post, inStrt, inIndex - 1, s, hm); s.push(val); } // This function basically initializes postIndex // as last element index, then fills stack with // reverse preorder traversal using printPre function printPreMain(In,post) { let len = In.length; postIndex = len - 1; let s = []; // Insert values in a hash map and their indexes. let hm = new Map(); for (let i = 0; i < In.length; i++) hm.set(In[i], i); // Fill preorder traversal in a stack fillPre(In, post, 0, len - 1, s, hm); // Print contents of stack while (s.length != 0) document.write(s.pop() + " "); } // Driver code let In=[4, 10, 12, 15, 18, 22, 24, 25, 31, 35, 44, 50, 66, 70, 90]; let post=[4, 12, 10, 18, 24, 22, 15, 31, 44, 35, 66, 90, 70, 50, 25]; printPreMain(In, post); // This code is contributed by patel2127 </script>
25 15 10 4 12 22 18 24 50 35 31 44 70 66 90
Complejidad de tiempo: O(n)