Primera búsqueda en profundidad o DFS para un gráfico

 

El primer recorrido en profundidad (o búsqueda) de un gráfico es similar al primer recorrido en profundidad de un árbol. El único inconveniente aquí es que, a diferencia de los árboles, los gráficos pueden contener ciclos (un Node puede visitarse dos veces). Para evitar procesar un Node más de una vez, use una array visitada booleana. 

Ejemplo: 

C++

// C++ program to print DFS traversal from
// a given vertex in a  given graph
#include <bits/stdc++.h>
using namespace std;
 
// Graph class represents a directed graph
// using adjacency list representation
class Graph {
public:
    map<int, bool> visited;
    map<int, list<int> > adj;
 
    // function to add an edge to graph
    void addEdge(int v, int w);
 
    // DFS traversal of the vertices
    // reachable from v
    void DFS(int v);
};
 
void Graph::addEdge(int v, int w)
{
    adj[v].push_back(w); // Add w to v’s list.
}
 
void Graph::DFS(int v)
{
    // Mark the current node as visited and
    // print it
    visited[v] = true;
    cout << v << " ";
 
    // Recur for all the vertices adjacent
    // to this vertex
    list<int>::iterator i;
    for (i = adj[v].begin(); i != adj[v].end(); ++i)
        if (!visited[*i])
            DFS(*i);
}
 
// Driver code
int main()
{
    // Create a graph given in the above diagram
    Graph g;
    g.addEdge(0, 1);
    g.addEdge(0, 2);
    g.addEdge(1, 2);
    g.addEdge(2, 0);
    g.addEdge(2, 3);
    g.addEdge(3, 3);
 
    cout << "Following is Depth First Traversal"
            " (starting from vertex 2) \n";
    g.DFS(2);
 
    return 0;
}
 
// improved by Vishnudev C

Java

// Java program to print DFS
// traversal from a given
// graph
import java.io.*;
import java.util.*;
 
// This class represents a
// directed graph using adjacency
// list representation
class Graph {
    private int V; // No. of vertices
 
    // Array  of lists for
    // Adjacency List Representation
    private LinkedList<Integer> adj[];
 
    // Constructor
    @SuppressWarnings("unchecked") Graph(int v)
    {
        V = v;
        adj = new LinkedList[v];
        for (int i = 0; i < v; ++i)
            adj[i] = new LinkedList();
    }
 
    // Function to add an edge into the graph
    void addEdge(int v, int w)
    {
        adj[v].add(w); // Add w to v's list.
    }
 
    // A function used by DFS
    void DFSUtil(int v, boolean visited[])
    {
        // Mark the current node as visited and print it
        visited[v] = true;
        System.out.print(v + " ");
 
        // Recur for all the vertices adjacent to this
        // vertex
        Iterator<Integer> i = adj[v].listIterator();
        while (i.hasNext()) {
            int n = i.next();
            if (!visited[n])
                DFSUtil(n, visited);
        }
    }
 
    // The function to do DFS traversal.
    // It uses recursive
    // DFSUtil()
    void DFS(int v)
    {
        // Mark all the vertices as
        // not visited(set as
        // false by default in java)
        boolean visited[] = new boolean[V];
 
        // Call the recursive helper
        // function to print DFS
        // traversal
        DFSUtil(v, visited);
    }
 
    // Driver Code
    public static void main(String args[])
    {
        Graph g = new Graph(4);
 
        g.addEdge(0, 1);
        g.addEdge(0, 2);
        g.addEdge(1, 2);
        g.addEdge(2, 0);
        g.addEdge(2, 3);
        g.addEdge(3, 3);
 
        System.out.println(
            "Following is Depth First Traversal "
            + "(starting from vertex 2)");
 
        g.DFS(2);
    }
}
// This code is contributed by Aakash Hasija

Python3

# Python3 program to print DFS traversal
# from a given  graph
from collections import defaultdict
 
# This class represents a directed graph using
# adjacency list representation
 
 
class Graph:
 
    # Constructor
    def __init__(self):
 
        # default dictionary to store graph
        self.graph = defaultdict(list)
 
    # function to add an edge to graph
    def addEdge(self, u, v):
        self.graph[u].append(v)
 
    # A function used by DFS
    def DFSUtil(self, v, visited):
 
        # Mark the current node as visited
        # and print it
        visited.add(v)
        print(v, end=' ')
 
        # Recur for all the vertices
        # adjacent to this vertex
        for neighbour in self.graph[v]:
            if neighbour not in visited:
                self.DFSUtil(neighbour, visited)
 
    # The function to do DFS traversal. It uses
    # recursive DFSUtil()
    def DFS(self, v):
 
        # Create a set to store visited vertices
        visited = set()
 
        # Call the recursive helper function
        # to print DFS traversal
        self.DFSUtil(v, visited)
 
# Driver code
 
 
# Create a graph given
# in the above diagram
g = Graph()
g.addEdge(0, 1)
g.addEdge(0, 2)
g.addEdge(1, 2)
g.addEdge(2, 0)
g.addEdge(2, 3)
g.addEdge(3, 3)
 
print("Following is DFS from (starting from vertex 2)")
g.DFS(2)
 
# This code is contributed by Neelam Yadav

C#

// C# program to print DFS traversal
// from a given graph
using System;
using System.Collections.Generic;
 
// This class represents a directed graph
// using adjacency list representation
class Graph {
    private int V; // No. of vertices
 
    // Array of lists for
    // Adjacency List Representation
    private List<int>[] adj;
 
    // Constructor
    Graph(int v)
    {
        V = v;
        adj = new List<int>[ v ];
        for (int i = 0; i < v; ++i)
            adj[i] = new List<int>();
    }
 
    // Function to Add an edge into the graph
    void AddEdge(int v, int w)
    {
        adj[v].Add(w); // Add w to v's list.
    }
 
    // A function used by DFS
    void DFSUtil(int v, bool[] visited)
    {
        // Mark the current node as visited
        // and print it
        visited[v] = true;
        Console.Write(v + " ");
 
        // Recur for all the vertices
        // adjacent to this vertex
        List<int> vList = adj[v];
        foreach(var n in vList)
        {
            if (!visited[n])
                DFSUtil(n, visited);
        }
    }
 
    // The function to do DFS traversal.
    // It uses recursive DFSUtil()
    void DFS(int v)
    {
        // Mark all the vertices as not visited
        // (set as false by default in c#)
        bool[] visited = new bool[V];
 
        // Call the recursive helper function
        // to print DFS traversal
        DFSUtil(v, visited);
    }
 
    // Driver Code
    public static void Main(String[] args)
    {
        Graph g = new Graph(4);
 
        g.AddEdge(0, 1);
        g.AddEdge(0, 2);
        g.AddEdge(1, 2);
        g.AddEdge(2, 0);
        g.AddEdge(2, 3);
        g.AddEdge(3, 3);
 
        Console.WriteLine(
            "Following is Depth First Traversal "
            + "(starting from vertex 2)");
 
        g.DFS(2);
        Console.ReadKey();
    }
}
 
// This code is contributed by techno2mahi

Javascript

<script>
 
// Javascript program to print DFS
// traversal from a given
// graph
 
// This class represents a
// directed graph using adjacency
// list representation
class Graph
{
     
    // Constructor
    constructor(v)
    {
        this.V = v;
        this.adj = new Array(v);
        for(let i = 0; i < v; i++)
            this.adj[i] = [];
    }
     
    // Function to add an edge into the graph
    addEdge(v, w)
    {
         
        // Add w to v's list.
        this.adj[v].push(w);
    }
     
    // A function used by DFS
    DFSUtil(v, visited)
    {
         
        // Mark the current node as visited and print it
        visited[v] = true;
        document.write(v + " ");
  
        // Recur for all the vertices adjacent to this
        // vertex
        for(let i of this.adj[v].values())
        {
            let n = i
            if (!visited[n])
                this.DFSUtil(n, visited);
        }
    }
     
    // The function to do DFS traversal.
    // It uses recursive
    // DFSUtil()
    DFS(v)
    {
         
        // Mark all the vertices as
        // not visited(set as
        // false by default in java)
        let visited = new Array(this.V);
        for(let i = 0; i < this.V; i++)
            visited[i] = false;
  
        // Call the recursive helper
        // function to print DFS
        // traversal
        this.DFSUtil(v, visited);
    }
}
 
// Driver Code
g = new Graph(4);
  
g.addEdge(0, 1);
g.addEdge(0, 2);
g.addEdge(1, 2);
g.addEdge(2, 0);
g.addEdge(2, 3);
g.addEdge(3, 3);
 
document.write("Following is Depth First Traversal " +
               "(starting from vertex 2)<br>");
 
g.DFS(2);
 
// This code is contributed by avanitrachhadiya2155
 
</script>

C++

// C++ program to print DFS
// traversal for a given
// graph
#include <bits/stdc++.h>
using namespace std;
 
class Graph {
 
    // A function used by DFS
    void DFSUtil(int v);
 
public:
    map<int, bool> visited;
    map<int, list<int> > adj;
    // function to add an edge to graph
    void addEdge(int v, int w);
 
    // prints DFS traversal of the complete graph
    void DFS();
};
 
void Graph::addEdge(int v, int w)
{
    adj[v].push_back(w); // Add w to v’s list.
}
 
void Graph::DFSUtil(int v)
{
    // Mark the current node as visited and print it
    visited[v] = true;
    cout << v << " ";
 
    // Recur for all the vertices adjacent to this vertex
    list<int>::iterator i;
    for (i = adj[v].begin(); i != adj[v].end(); ++i)
        if (!visited[*i])
            DFSUtil(*i);
}
 
// The function to do DFS traversal. It uses recursive
// DFSUtil()
void Graph::DFS()
{
    // Call the recursive helper function to print DFS
    // traversal starting from all vertices one by one
    for (auto i : adj)
        if (visited[i.first] == false)
            DFSUtil(i.first);
}
 
// Driver  Code
int main()
{
    // Create a graph given in the above diagram
    Graph g;
    g.addEdge(0, 1);
    g.addEdge(0, 9);
    g.addEdge(1, 2);
    g.addEdge(2, 0);
    g.addEdge(2, 3);
    g.addEdge(9, 3);
 
    cout << "Following is Depth First Traversal \n";
    g.DFS();
 
    return 0;
}
// improved by Vishnudev C

Java

// Java program to print DFS
// traversal from a given
// graph
import java.io.*;
import java.util.*;
 
// This class represents a
// directed graph using adjacency
// list representation
class Graph {
    private int V; // No. of vertices
 
    // Array  of lists for
    // Adjacency List Representation
    private LinkedList<Integer> adj[];
 
    // Constructor
    @SuppressWarnings("unchecked") Graph(int v)
    {
        V = v;
        adj = new LinkedList[v];
        for (int i = 0; i < v; ++i)
            adj[i] = new LinkedList();
    }
 
    // Function to add an edge into the graph
    void addEdge(int v, int w)
    {
        adj[v].add(w); // Add w to v's list.
    }
 
    // A function used by DFS
    void DFSUtil(int v, boolean visited[])
    {
        // Mark the current node as visited and print it
        visited[v] = true;
        System.out.print(v + " ");
 
        // Recur for all the vertices adjacent to this
        // vertex
        Iterator<Integer> i = adj[v].listIterator();
        while (i.hasNext()) {
            int n = i.next();
            if (!visited[n])
                DFSUtil(n, visited);
        }
    }
 
    // The function to do DFS traversal. It uses recursive
    // DFSUtil()
    void DFS()
    {
        // Mark all the vertices as not visited(set as
        // false by default in java)
        boolean visited[] = new boolean[V];
 
        // Call the recursive helper function to print DFS
        // traversal starting from all vertices one by one
        for (int i = 0; i < V; ++i)
            if (visited[i] == false)
                DFSUtil(i, visited);
    }
 
    // Driver Code
    public static void main(String args[])
    {
        Graph g = new Graph(4);
 
        g.addEdge(0, 1);
        g.addEdge(0, 2);
        g.addEdge(1, 2);
        g.addEdge(2, 0);
        g.addEdge(2, 3);
        g.addEdge(3, 3);
 
        System.out.println(
            "Following is Depth First Traversal");
 
        g.DFS();
    }
}
// This code is contributed by Aakash Hasija

Python3

'''Python program to print DFS traversal for complete graph'''
from collections import defaultdict
 
# this class represents a directed graph using adjacency list representation
 
 
class Graph:
    # Constructor
    def __init__(self):
        # default dictionary to store graph
        self.graph = defaultdict(list)
 
    # Function to add an edge to graph
    def addEdge(self, u, v):
        self.graph[u].append(v)
    # A function used by DFS
 
    def DFSUtil(self, v, visited):
        # Mark the current node as visited and print it
        visited.add(v)
        print(v,end=" ")
 
        # recur for all the vertices adjacent to this vertex
        for neighbour in self.graph[v]:
            if neighbour not in visited:
                self.DFSUtil(neighbour, visited)
        # The function to do DFS traversal. It uses recursive DFSUtil
 
    def DFS(self):
        # create a set to store all visited vertices
        visited = set()
        # call the recursive helper function to print DFS traversal starting from all
        # vertices one by one
        for vertex in self.graph:
            if vertex not in visited:
                self.DFSUtil(vertex, visited)
# Driver code
# create a graph given in the above diagram
 
print("Following is Depth First Traversal \n")
g = Graph()
g.addEdge(0, 1)
g.addEdge(0, 2)
g.addEdge(1, 2)
g.addEdge(2, 0)
g.addEdge(2, 3)
g.addEdge(3, 3)
g.DFS()
 
# Improved by Dheeraj Kumar

C#

// C# program to print DFS
// traversal from a given
// graph
using System;
using System.Collections.Generic;
 
// This class represents a
// directed graph using adjacency
// list representation
public class Graph {
    private int V; // No. of vertices
 
    // Array of lists for
    // Adjacency List Representation
    private List<int>[] adj;
 
    // Constructor
    Graph(int v)
    {
        V = v;
        adj = new List<int>[ v ];
        for (int i = 0; i < v; ++i)
            adj[i] = new List<int>();
    }
 
    // Function to add an edge into the graph
    void addEdge(int v, int w)
    {
        adj[v].Add(w); // Add w to v's list.
    }
 
    // A function used by DFS
    void DFSUtil(int v, bool[] visited)
    {
        // Mark the current
        // node as visited and print it
        visited[v] = true;
        Console.Write(v + " ");
 
        // Recur for all the
        // vertices adjacent to this
        // vertex
        foreach(int i in adj[v])
        {
            int n = i;
            if (!visited[n])
                DFSUtil(n, visited);
        }
    }
 
    // The function to do
    // DFS traversal. It uses recursive
    // DFSUtil()
    void DFS()
    {
        // Mark all the vertices as not visited(set as
        // false by default in java)
        bool[] visited = new bool[V];
 
        // Call the recursive helper
        // function to print DFS
        // traversal starting from
        // all vertices one by one
        for (int i = 0; i < V; ++i)
            if (visited[i] == false)
                DFSUtil(i, visited);
    }
 
    // Driver code
    public static void Main(String[] args)
    {
        Graph g = new Graph(4);
 
        g.addEdge(0, 1);
        g.addEdge(0, 2);
        g.addEdge(1, 2);
        g.addEdge(2, 0);
        g.addEdge(2, 3);
        g.addEdge(3, 3);
 
        Console.WriteLine(
            "Following is Depth First Traversal");
 
        g.DFS();
    }
}
 
// This code is contributed by PrinciRaj1992

Javascript

<script>
      // JavaScript program to print DFS
      // traversal from a given
      // graph
 
      // This class represents a
      // directed graph using adjacency
      // list representation
      class Graph
      {
       
        // Constructor
        constructor(v) {
          this.V = v;
          this.adj = new Array(v).fill([]);
        }
 
        // Function to Add an edge into the graph
        AddEdge(v, w) {
          this.adj[v].push(w); // Add w to v's list.
        }
 
        // A function used by DFS
        DFSUtil(v, visited)
        {
         
          // Mark the current
          // node as visited and print it
          visited[v] = true;
          document.write(v + " ");
 
          // Recur for all the
          // vertices adjacent to this
          // vertex
          for (const n of this.adj[v]) {
            if (!visited[n]) this.DFSUtil(n, visited);
          }
        }
 
        // The function to do
        // DFS traversal. It uses recursive
        // DFSUtil()
        DFS()
        {
         
          // Mark all the vertices as not visited(set as
          var visited = new Array(this.V).fill(false);
 
          // Call the recursive helper
          // function to print DFS
          // traversal starting from
          // all vertices one by one
          for (var i = 0; i < this.V; ++i)
            if (visited[i] == false) this.DFSUtil(i, visited);
        }
      }
       
      // Driver Code
      var g = new Graph(4);
 
      g.AddEdge(0, 1);
      g.AddEdge(0, 2);
      g.AddEdge(1, 2);
      g.AddEdge(2, 0);
      g.AddEdge(2, 3);
      g.AddEdge(3, 3);
 
      document.write("Following is Depth First Traversal<br>");
 
      g.DFS();
       
      // This code is contributed by rdtank.
    </script>

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *