Dada una array que contiene N elementos y un número K. La tarea es encontrar el producto de todos los elementos de la array que son divisibles por K.
Ejemplos :
Input : arr[] = {15, 16, 10, 9, 6, 7, 17} K = 3 Output : 810 Input : arr[] = {5, 3, 6, 8, 4, 1, 2, 9} K = 2 Output : 384
La idea es recorrer la array y verificar los elementos uno por uno. Si un elemento es divisible por K, multiplique el valor de ese elemento con el producto hasta el momento y continúe este proceso hasta que se alcance el final de la array.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program to find Product of all the elements // in an array divisible by a given number K #include <iostream> using namespace std; // Function to find Product of all the elements // in an array divisible by a given number K int findProduct(int arr[], int n, int k) { int prod = 1; // Traverse the array for (int i = 0; i < n; i++) { // If current element is divisible by k // multiply with product so far if (arr[i] % k == 0) { prod *= arr[i]; } } // Return calculated product return prod; } // Driver code int main() { int arr[] = { 15, 16, 10, 9, 6, 7, 17 }; int n = sizeof(arr) / sizeof(arr[0]); int k = 3; cout << findProduct(arr, n, k); return 0; }
C
// C program to find Product of all the elements // in an array divisible by a given number K #include <stdio.h> // Function to find Product of all the elements // in an array divisible by a given number K int findProduct(int arr[], int n, int k) { int prod = 1; // Traverse the array for (int i = 0; i < n; i++) { // If current element is divisible by k // multiply with product so far if (arr[i] % k == 0) { prod *= arr[i]; } } // Return calculated product return prod; } // Driver code int main() { int arr[] = { 15, 16, 10, 9, 6, 7, 17 }; int n = sizeof(arr) / sizeof(arr[0]); int k = 3; printf("%d",findProduct(arr, n, k)); return 0; } // This code is contributed by kothavvsaakash.
Java
// Java program to find Product of all the elements // in an array divisible by a given number K import java.io.*; class GFG { // Function to find Product of all the elements // in an array divisible by a given number K static int findProduct(int arr[], int n, int k) { int prod = 1; // Traverse the array for (int i = 0; i < n; i++) { // If current element is divisible by k // multiply with product so far if (arr[i] % k == 0) { prod *= arr[i]; } } // Return calculated product return prod; } // Driver code public static void main (String[] args) { int arr[] = { 15, 16, 10, 9, 6, 7, 17 }; int n = arr.length; int k = 3; System.out.println(findProduct(arr, n, k)); } } // This code is contributed by inder_verma..
Python3
# Python3 program to find Product of all # the elements in an array divisible by # a given number K # Function to find Product of all the elements # in an array divisible by a given number K def findProduct(arr, n, k): prod = 1 # Traverse the array for i in range(n): # If current element is divisible # by k, multiply with product so far if (arr[i] % k == 0): prod *= arr[i] # Return calculated product return prod # Driver code if __name__ == "__main__": arr= [15, 16, 10, 9, 6, 7, 17 ] n = len(arr) k = 3 print (findProduct(arr, n, k)) # This code is contributed by ita_c
C#
// C# program to find Product of all // the elements in an array divisible // by a given number K using System; class GFG { // Function to find Product of all // the elements in an array divisible // by a given number K static int findProduct(int []arr, int n, int k) { int prod = 1; // Traverse the array for (int i = 0; i < n; i++) { // If current element is divisible // by k multiply with product so far if (arr[i] % k == 0) { prod *= arr[i]; } } // Return calculated product return prod; } // Driver code public static void Main() { int []arr = { 15, 16, 10, 9, 6, 7, 17 }; int n = arr.Length; int k = 3; Console.WriteLine(findProduct(arr, n, k)); } } // This code is contributed by inder_verma
PHP
<?php // PHP program to find Product of // all the elements in an array // divisible by a given number K // Function to find Product of // all the elements in an array // divisible by a given number K function findProduct(&$arr, $n, $k) { $prod = 1; // Traverse the array for ($i = 0; $i < $n; $i++) { // If current element is divisible // by k multiply with product so far if ($arr[$i] % $k == 0) { $prod *= $arr[$i]; } } // Return calculated product return $prod; } // Driver code $arr = array(15, 16, 10, 9, 6, 7, 17 ); $n = sizeof($arr); $k = 3; echo (findProduct($arr, $n, $k)); // This code is contributed // by Shivi_Aggarwal ?>
Javascript
<script> // Function to find Product of all the elements // in an array divisible by a given number K function findProduct( arr, n, k) { var prod = 1; // Traverse the array for (var i = 0; i < n; i++) { // If current element is divisible by k // multiply with product so far if (arr[i] % k == 0) { prod *= arr[i]; } } // Return calculated product return prod; } var arr = [15, 16, 10, 9, 6, 7, 17 ]; document.write(findProduct(arr, 7, 3)); </script>
Producción:
810
Complejidad de tiempo : O(N), donde N es el número de elementos en la array.
Espacio Auxiliar: O(1)
Publicación traducida automáticamente
Artículo escrito por VishalBachchas y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA