Dada una array cuadrada, encuentre el producto máximo de cuatro elementos adyacentes de la array. Los elementos adyacentes de la array pueden ser arriba, abajo, izquierda, derecha, diagonal o antidiagonal. Los cuatro o más números deben estar adyacentes entre sí.
Nota: n debe ser mayor o igual a 4, es decir, n >= 4
C++
// C++ program to find out the maximum product // in the matrix which four elements are // adjacent to each other in one direction #include <bits/stdc++.h> using namespace std; const int n = 5; // function to find max product int FindMaxProduct(int arr[][n], int n) { int max = 0, result; // iterate the rows. for (int i = 0; i < n; i++) { // iterate the columns. for (int j = 0; j < n; j++) { // check the maximum product // in horizontal row. if ((j - 3) >= 0) { result = arr[i][j] * arr[i][j - 1] * arr[i][j - 2] * arr[i][j - 3]; if (max < result) max = result; } // check the maximum product // in vertical row. if ((i - 3) >= 0) { result = arr[i][j] * arr[i - 1][j] * arr[i - 2][j] * arr[i - 3][j]; if (max < result) max = result; } // check the maximum product in // diagonal (going through down - right) if ((i - 3) >= 0 && (j - 3) >= 0) { result = arr[i][j] * arr[i - 1][j - 1] * arr[i - 2][j - 2] * arr[i - 3][j - 3]; if (max < result) max = result; } // check the maximum product in // diagonal (going through up - right) if ((i - 3) >= 0 && (j - 1) <= 0) { result = arr[i][j] * arr[i - 1][j + 1] * arr[i - 2][j + 2] * arr[i - 3][j + 3]; if (max < result) max = result; } } } return max; } // Driver code int main() { /* int arr[][4] = {{6, 2, 3, 4}, {5, 4, 3, 1}, {7, 4, 5, 6}, {8, 3, 1, 0}};*/ /* int arr[][5] = {{1, 2, 1, 3, 4}, {5, 6, 3, 9, 2}, {7, 8, 8, 1, 2}, {1, 0, 7, 9, 3}, {3, 0, 8, 4, 9}};*/ int arr[][5] = {{1, 2, 3, 4, 5}, {6, 7, 8, 9, 1}, {2, 3, 4, 5, 6}, {7, 8, 9, 1, 0}, {9, 6, 4, 2, 3}}; cout << FindMaxProduct(arr, n); return 0; }
Java
// Java program to find out the // maximum product in the matrix // which four elements are adjacent // to each other in one direction class GFG { static final int n = 5; // function to find max product static int FindMaxProduct(int arr[][], int n) { int max = 0, result; // iterate the rows. for (int i = 0; i < n; i++) { // iterate the columns. for (int j = 0; j < n; j++) { // check the maximum product // in horizontal row. if ((j - 3) >= 0) { result = arr[i][j] * arr[i][j - 1] * arr[i][j - 2] * arr[i][j - 3]; if (max < result) max = result; } // check the maximum product // in vertical row. if ((i - 3) >= 0) { result = arr[i][j] * arr[i - 1][j] * arr[i - 2][j] * arr[i - 3][j]; if (max < result) max = result; } // check the maximum product in // diagonal (going through down - right) if ((i - 3) >= 0 && (j - 3) >= 0) { result = arr[i][j] * arr[i - 1][j - 1] * arr[i - 2][j - 2] * arr[i - 3][j - 3]; if (max < result) max = result; } // check the maximum product in // diagonal (going through up - right) if ((i - 3) >= 0 && (j - 1) <= 0) { result = arr[i][j] * arr[i - 1][j + 1] * arr[i - 2][j + 2] * arr[i - 3][j + 3]; if (max < result) max = result; } } } return max; } // Driver code public static void main(String[] args) { /* int arr[][4] = {{6, 2, 3, 4}, {5, 4, 3, 1}, {7, 4, 5, 6}, {8, 3, 1, 0}};*/ /* int arr[][5] = {{1, 2, 1, 3, 4}, {5, 6, 3, 9, 2}, {7, 8, 8, 1, 2}, {1, 0, 7, 9, 3}, {3, 0, 8, 4, 9}};*/ int arr[][] = { { 1, 2, 3, 4, 5 }, { 6, 7, 8, 9, 1 }, { 2, 3, 4, 5, 6 }, { 7, 8, 9, 1, 0 }, { 9, 6, 4, 2, 3 } }; System.out.print(FindMaxProduct(arr, n)); } } // This code is contributed by Anant Agarwal.
Python3
# Python3 program to find out the maximum # product in the matrix which four elements # are adjacent to each other in one direction n = 5 # function to find max product def FindMaxProduct(arr, n): max = 0 # iterate the rows. for i in range(n): # iterate the columns. for j in range( n): # check the maximum product # in horizontal row. if ((j - 3) >= 0): result = (arr[i][j] * arr[i][j - 1] * arr[i][j - 2] * arr[i][j - 3]) if (max < result): max = result # check the maximum product # in vertical row. if ((i - 3) >= 0) : result = (arr[i][j] * arr[i - 1][j] * arr[i - 2][j] * arr[i - 3][j]) if (max < result): max = result # check the maximum product in # diagonal going through down - right if ((i - 3) >= 0 and (j - 3) >= 0): result = (arr[i][j] * arr[i - 1][j - 1] * arr[i - 2][j - 2] * arr[i - 3][j - 3]) if (max < result): max = result # check the maximum product in # diagonal going through up - right if ((i - 3) >= 0 and (j - 1) <= 0): result = (arr[i][j] * arr[i - 1][j + 1] * arr[i - 2][j + 2] * arr[i - 3][j + 3]) if (max < result): max = result return max # Driver code if __name__ == "__main__": # int arr[][4] = {{6, 2, 3, 4}, # {5, 4, 3, 1}, # {7, 4, 5, 6}, # {8, 3, 1, 0}}; # int arr[][5] = {{1, 2, 1, 3, 4}, # {5, 6, 3, 9, 2}, # {7, 8, 8, 1, 2}, # {1, 0, 7, 9, 3}, # {3, 0, 8, 4, 9}}; arr = [[1, 2, 3, 4, 5], [6, 7, 8, 9, 1], [2, 3, 4, 5, 6], [7, 8, 9, 1, 0], [9, 6, 4, 2, 3]] print(FindMaxProduct(arr, n)) # This code is contributed by ita_c
C#
// C# program to find out the // maximum product in the matrix // which four elements are adjacent // to each other in one direction using System; public class GFG { static int n = 5; // Function to find max product static int FindMaxProduct(int[, ] arr, int n) { int max = 0, result; // iterate the rows for (int i = 0; i < n; i++) { // iterate the columns for (int j = 0; j < n; j++) { // check the maximum product // in horizontal row. if ((j - 3) >= 0) { result = arr[i, j] * arr[i, j - 1] * arr[i, j - 2] * arr[i, j - 3]; if (max < result) max = result; } // check the maximum product // in vertical row. if ((i - 3) >= 0) { result = arr[i, j] * arr[i - 1, j] * arr[i - 2, j] * arr[i - 3, j]; if (max < result) max = result; } // check the maximum product in // diagonal going through down - right if ((i - 3) >= 0 && (j - 3) >= 0) { result = arr[i, j] * arr[i - 1, j - 1] * arr[i - 2, j - 2] * arr[i - 3, j - 3]; if (max < result) max = result; } // check the maximum product in // diagonal going through up - right if ((i - 3) >= 0 && (j - 1) <= 0) { result = arr[i, j] * arr[i - 1, j + 1] * arr[i - 2, j + 2] * arr[i - 3, j + 3]; if (max < result) max = result; } } } return max; } // Driver Code static public void Main() { int[, ] arr = { { 1, 2, 3, 4, 5 }, { 6, 7, 8, 9, 1 }, { 2, 3, 4, 5, 6 }, { 7, 8, 9, 1, 0 }, { 9, 6, 4, 2, 3 } }; Console.Write(FindMaxProduct(arr, n)); } } // This code is contributed by Shrikant13
PHP
<?php // PHP program to find out the maximum product // in the matrix which four elements are // adjacent to each other in one direction $n = 5; // function to find max product function FindMaxProduct( $arr, $n) { $max = 0; $result; // iterate the rows. for ( $i = 0; $i < $n; $i++) { // iterate the columns. for ( $j = 0; $j < $n; $j++) { // check the maximum product // in horizontal row. if (($j - 3) >= 0) { $result = $arr[$i][$j] * $arr[$i][$j - 1] * $arr[$i][$j - 2] * $arr[$i][$j - 3]; if ($max < $result) $max = $result; } // check the maximum product // in vertical row. if (($i - 3) >= 0) { $result = $arr[$i][$j] * $arr[$i - 1][$j] * $arr[$i - 2][$j] * $arr[$i - 3][$j]; if ($max < $result) $max = $result; } // check the maximum product in // diagonal going through down - right if (($i - 3) >= 0 and ($j - 3) >= 0) { $result = $arr[$i][$j] * $arr[$i - 1][$j - 1] * $arr[$i - 2][$j - 2] * $arr[$i - 3][$j - 3]; if ($max < $result) $max = $result; } // check the maximum product in // diagonal going through up - right if (($i - 3) >= 0 and ($j - 1) <= 0) { $result = $arr[$i][$j] * $arr[$i - 1][$j + 1] * $arr[$i - 2][$j + 2] * $arr[$i - 3][$j + 3]; if ($max < $result) $max = $result; } } } return $max; } // Driver Code $arr = array(array(1, 2, 3, 4, 5), array(6, 7, 8, 9, 1), array(2, 3, 4, 5, 6), array(7, 8, 9, 1, 0), array(9, 6, 4, 2, 3)); echo FindMaxProduct($arr, $n); // This code is contributed by anuj_67. ?>
Javascript
<script> // Javascript program to find out the // maximum product in the matrix // which four elements are adjacent // to each other in one direction let n = 5; // function to find max product function FindMaxProduct(arr,n) { let max = 0, result; // iterate the rows. for (let i = 0; i < n; i++) { // iterate the columns. for (let j = 0; j < n; j++) { // check the maximum product // in horizontal row. if ((j - 3) >= 0) { result = arr[i][j] * arr[i][j - 1] * arr[i][j - 2] * arr[i][j - 3]; if (max < result) max = result; } // check the maximum product // in vertical row. if ((i - 3) >= 0) { result = arr[i][j] * arr[i - 1][j] * arr[i - 2][j] * arr[i - 3][j]; if (max < result) max = result; } // check the maximum product in // diagonal (going through down - right) if ((i - 3) >= 0 && (j - 3) >= 0) { result = arr[i][j] * arr[i - 1][j - 1] * arr[i - 2][j - 2] * arr[i - 3][j - 3]; if (max < result) max = result; } // check the maximum product in // diagonal (going through up - right) if ((i - 3) >= 0 && (j - 1) <= 0) { result = arr[i][j] * arr[i - 1][j + 1] * arr[i - 2][j + 2] * arr[i - 3][j + 3]; if (max < result) max = result; } } } return max; } // Driver code /* int arr[][4] = {{6, 2, 3, 4}, {5, 4, 3, 1}, {7, 4, 5, 6}, {8, 3, 1, 0}};*/ /* int arr[][5] = {{1, 2, 1, 3, 4}, {5, 6, 3, 9, 2}, {7, 8, 8, 1, 2}, {1, 0, 7, 9, 3}, {3, 0, 8, 4, 9}};*/ let arr = [[ 1, 2, 3, 4, 5 ], [ 6, 7, 8, 9, 1 ], [ 2, 3, 4, 5, 6 ], [ 7, 8, 9, 1, 0 ], [ 9, 6, 4, 2, 3 ]]; document.write(FindMaxProduct(arr, n)); // This code is contributed by sravan kumar </script>
C++
// C++ implementation of the above approach #include <bits/stdc++.h> using namespace std; int maxPro(int a[6][5], int n, int m, int k) { int maxi(1), mp(1); for (int i = 0; i < n; ++i) { // Window Product for each row. int wp(1); for (int l = 0; l < k; ++l) { wp *= a[i][l]; } // Maximum window product for each row mp = wp; for (int j = k; j < m; ++j) { wp = wp * a[i][j] / a[i][j - k]; // Global maximum window product maxi = max(maxi,max(mp,wp)); } } return maxi; } // Driver Code int main() { int n = 6, m = 5, k = 4; int a[6][5] = { { 1, 2, 3, 4, 5 }, { 6, 7, 8, 9, 1 }, { 2, 3, 4, 5, 6 }, { 7, 8, 9, 1, 0 }, { 9, 6, 4, 2, 3 }, { 1, 1, 2, 1, 1 } }; cout << maxPro(a, n, m, k); return 0; }
Java
// Java implementation of the above approach import java.io.*; class GFG { public static int maxPro(int[][] a, int n, int m, int k) { int maxi = 1, mp = 1; for (int i = 0; i < n; ++i) { // Window Product for each row. int wp = 1; for (int l = 0; l < k; ++l) { wp *= a[i][l]; } // Maximum window product for each row mp = wp; for (int j = k; j < m; ++j) { wp = wp * a[i][j] / a[i][j - k]; // Global maximum // window product maxi = Math.max( maxi, Math.max(mp, wp)); } } return maxi; } // Driver Code public static void main(String[] args) { int n = 6, m = 5, k = 4; int[][] a = new int[][] { { 1, 2, 3, 4, 5 }, { 6, 7, 8, 9, 1 }, { 2, 3, 4, 5, 6 }, { 7, 8, 9, 1, 0 }, { 9, 6, 4, 2, 3 }, { 1, 1, 2, 1, 1 } }; // Function call int maxpro = maxPro(a, n, m, k); System.out.println(maxpro); } }
Python3
# Python implementation of the above approach def maxPro(a,n,m,k): maxi = 1 mp = 1 for i in range(n): # Window Product for each row. wp = 1 for l in range(k): wp *= a[i][l] # Maximum window product for each row mp = wp for j in range(k,m): wp = wp * a[i][j] / a[i][j - k] # Global maximum # window product maxi = max( maxi, max(mp, wp)) return maxi # Driver Code n = 6 m = 5 k = 4 a=[[1, 2, 3, 4, 5 ], [ 6, 7, 8, 9, 1 ], [ 2, 3, 4, 5, 6 ], [ 7, 8, 9, 1, 0 ], [ 9, 6, 4, 2, 3 ], [ 1, 1, 2, 1, 1 ]] # Function call maxpro = maxPro(a, n, m, k) print(maxpro) # This code is contributed by ab2127
C#
// C# implementation of the above approach using System; class GFG{ public static int maxPro(int[,] a, int n, int m, int k) { int maxi = 1, mp = 1; for(int i = 0; i < n; ++i) { // Window Product for each row. int wp = 1; for(int l = 0; l < k; ++l) { wp *= a[i, l]; } // Maximum window product for each row mp = wp; for(int j = k; j < m; ++j) { wp = wp * a[i, j] / a[i, j - k]; // Global maximum // window product maxi = Math.Max(maxi, Math.Max(mp, wp)); } } return maxi; } // Driver Code static public void Main() { int n = 6, m = 5, k = 4; int[,] a = {{ 1, 2, 3, 4, 5 }, { 6, 7, 8, 9, 1 }, { 2, 3, 4, 5, 6 }, { 7, 8, 9, 1, 0 }, { 9, 6, 4, 2, 3 }, { 1, 1, 2, 1, 1 }}; // Function call int maxpro = maxPro(a, n, m, k); Console.WriteLine(maxpro); } } // This code is contributed by avanitrachhadiya2155
Javascript
<script> // Javascript implementation of the above approach function maxPro(a,n,m,k) { let maxi = 1, mp = 1; for (let i = 0; i < n; ++i) { // Window Product for each row. let wp = 1; for (let l = 0; l < k; ++l) { wp *= a[i][l]; } // Maximum window product for each row mp = wp; for (let j = k; j < m; ++j) { wp = wp * a[i][j] / a[i][j - k]; // Global maximum // window product maxi = Math.max( maxi, Math.max(mp, wp)); } } return maxi; } // Driver Code let n = 6, m = 5, k = 4; let a=[[1, 2, 3, 4, 5 ], [ 6, 7, 8, 9, 1 ], [ 2, 3, 4, 5, 6 ], [ 7, 8, 9, 1, 0 ], [ 9, 6, 4, 2, 3 ], [ 1, 1, 2, 1, 1 ]] // Function call let maxpro = maxPro(a, n, m, k); document.write(maxpro); // This code is contributed by rag2127 </script>
Publicación traducida automáticamente
Artículo escrito por shrikanth13 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA