Dada una array A[] de tamaño N. Resolver consultas Q. Encuentre el producto en el rango [L, R] bajo el módulo P (P es Prime).
Ejemplos:
Input : A[] = {1, 2, 3, 4, 5, 6} L = 2, R = 5, P = 229 Output : 120 Input : A[] = {1, 2, 3, 4, 5, 6}, L = 2, R = 5, P = 113 Output : 7
Fuerza bruta: para cada una de las consultas, recorra cada elemento en el rango [L, R] y calcule el producto bajo el módulo P. Esto responderá cada consulta en O (N).
Implementación:
C++
// Product in range // Queries in O(N) #include <bits/stdc++.h> using namespace std; // Function to calculate // Product in the given range. int calculateProduct(int A[], int L, int R, int P) { // As our array is 0 based // as and L and R are given // as 1 based index. L = L - 1; R = R - 1; int ans = 1; for (int i = L; i <= R; i++) { ans = ans * A[i]; ans = ans % P; } return ans; } // Driver code int main() { int A[] = { 1, 2, 3, 4, 5, 6 }; int P = 229; int L = 2, R = 5; cout << calculateProduct(A, L, R, P) << endl; L = 1, R = 3; cout << calculateProduct(A, L, R, P) << endl; return 0; }
Java
// Product in range Queries in O(N) import java.io.*; class GFG { // Function to calculate // Product in the given range. static int calculateProduct(int []A, int L, int R, int P) { // As our array is 0 based as // and L and R are given as 1 // based index. L = L - 1; R = R - 1; int ans = 1; for (int i = L; i <= R; i++) { ans = ans * A[i]; ans = ans % P; } return ans; } // Driver code static public void main (String[] args) { int []A = { 1, 2, 3, 4, 5, 6 }; int P = 229; int L = 2, R = 5; System.out.println( calculateProduct(A, L, R, P)); L = 1; R = 3; System.out.println( calculateProduct(A, L, R, P)); } } // This code is contributed by vt_m.
Python3
# Python3 program to find # Product in range Queries in O(N) # Function to calculate Product # in the given range. def calculateProduct (A, L, R, P): # As our array is 0 based # and L and R are given as # 1 based index. L = L - 1 R = R - 1 ans = 1 for i in range(R + 1): ans = ans * A[i] ans = ans % P return ans # Driver code A = [ 1, 2, 3, 4, 5, 6 ] P = 229 L = 2 R = 5 print (calculateProduct(A, L, R, P)) L = 1 R = 3 print (calculateProduct(A, L, R, P)) # This code is contributed # by "Abhishek Sharma 44"
C#
// Product in range Queries in O(N) using System; class GFG { // Function to calculate // Product in the given range. static int calculateProduct(int []A, int L, int R, int P) { // As our array is 0 based // as and L and R are given // as 1 based index. L = L - 1; R = R - 1; int ans = 1; for (int i = L; i <= R; i++) { ans = ans * A[i]; ans = ans % P; } return ans; } // Driver code static public void Main () { int []A = { 1, 2, 3, 4, 5, 6 }; int P = 229; int L = 2, R = 5; Console.WriteLine( calculateProduct(A, L, R, P)); L = 1; R = 3; Console.WriteLine( calculateProduct(A, L, R, P)); } } // This code is contributed by vt_m.
PHP
<?php // Product in range Queries in O(N) // Function to calculate // Product in the given range. function calculateProduct($A, $L, $R, $P) { // As our array is 0 based as // and L and R are given as 1 // based index. $L = $L - 1; $R = $R - 1; $ans = 1; for ($i = $L; $i <= $R; $i++) { $ans = $ans * $A[$i]; $ans = $ans % $P; } return $ans; } // Driver code $A = array( 1, 2, 3, 4, 5, 6 ); $P = 229; $L = 2; $R = 5; echo calculateProduct($A, $L, $R, $P),"\n" ; $L = 1; $R = 3; echo calculateProduct($A, $L, $R, $P),"\n" ; // This code is contributed by ajit. ?>
Javascript
<script> // Product in range Queries in O(N) // Function to calculate // Product in the given range. function calculateProduct(A, L, R, P) { // As our array is 0 based // as and L and R are given // as 1 based index. L = L - 1; R = R - 1; let ans = 1; for (let i = L; i <= R; i++) { ans = ans * A[i]; ans = ans % P; } return ans; } let A = [ 1, 2, 3, 4, 5, 6 ]; let P = 229; let L = 2, R = 5; document.write(calculateProduct(A, L, R, P) + "</br>"); L = 1; R = 3; document.write(calculateProduct(A, L, R, P) + "</br>"); </script>
120 6
Eficiente usando el inverso multiplicativo modular:
Como P es primo, podemos usar Modular Multiplicative Inverse. Usando programación dinámica, podemos calcular una array de preproductos bajo el módulo P tal que el valor en el índice i contiene el producto en el rango [0, i]. De manera similar, podemos calcular el producto pre-inverso bajo el módulo P. Ahora cada consulta se puede responder en O(1).
La array del producto inverso contiene el producto inverso en el rango [0, i] en el índice i. Entonces, para la consulta [L, R], la respuesta será Product[R]*InverseProduct[L-1]
Nota: No podemos calcular la respuesta como Producto[R]/Producto[L-1] porque el producto se calcula bajo el módulo P. Si no calculamos el producto bajo el módulo P, siempre existe la posibilidad de desbordamiento.
Implementación:
C++
// Product in range Queries in O(1) #include <bits/stdc++.h> using namespace std; #define MAX 100 int pre_product[MAX]; int inverse_product[MAX]; // Returns modulo inverse of a // with respect to m using // extended Euclid Algorithm // Assumption: a and m are // coprimes, i.e., gcd(a, m) = 1 int modInverse(int a, int m) { int m0 = m, t, q; int x0 = 0, x1 = 1; if (m == 1) return 0; while (a > 1) { // q is quotient q = a / m; t = m; // m is remainder now, // process same as // Euclid's algo m = a % m, a = t; t = x0; x0 = x1 - q * x0; x1 = t; } // Make x1 positive if (x1 < 0) x1 += m0; return x1; } // calculating pre_product // array void calculate_Pre_Product(int A[], int N, int P) { pre_product[0] = A[0]; for (int i = 1; i < N; i++) { pre_product[i] = pre_product[i - 1] * A[i]; pre_product[i] = pre_product[i] % P; } } // Calculating inverse_product // array. void calculate_inverse_product(int A[], int N, int P) { inverse_product[0] = modInverse(pre_product[0], P); for (int i = 1; i < N; i++) inverse_product[i] = modInverse(pre_product[i], P); } // Function to calculate // Product in the given range. int calculateProduct(int A[], int L, int R, int P) { // As our array is 0 based as // and L and R are given as 1 // based index. L = L - 1; R = R - 1; int ans; if (L == 0) ans = pre_product[R]; else ans = pre_product[R] * inverse_product[L - 1]; return ans; } // Driver Code int main() { // Array int A[] = { 1, 2, 3, 4, 5, 6 }; int N = sizeof(A) / sizeof(A[0]); // Prime P int P = 113; // Calculating PreProduct // and InverseProduct calculate_Pre_Product(A, N, P); calculate_inverse_product(A, N, P); // Range [L, R] in 1 base index int L = 2, R = 5; cout << calculateProduct(A, L, R, P) << endl; L = 1, R = 3; cout << calculateProduct(A, L, R, P) << endl; return 0; }
Java
// Java program to find Product // in range Queries in O(1) class GFG { static int MAX = 100; int pre_product[] = new int[MAX]; int inverse_product[] = new int[MAX]; // Returns modulo inverse of a // with respect to m using extended // Euclid Algorithm Assumption: a // and m are coprimes, // i.e., gcd(a, m) = 1 int modInverse(int a, int m) { int m0 = m, t, q; int x0 = 0, x1 = 1; if (m == 1) return 0; while (a > 1) { // q is quotient q = a / m; t = m; // m is remainder now, // process same as // Euclid's algo m = a % m; a = t; t = x0; x0 = x1 - q * x0; x1 = t; } // Make x1 positive if (x1 < 0) x1 += m0; return x1; } // calculating pre_product array void calculate_Pre_Product(int A[], int N, int P) { pre_product[0] = A[0]; for (int i = 1; i < N; i++) { pre_product[i] = pre_product[i - 1] * A[i]; pre_product[i] = pre_product[i] % P; } } // Calculating inverse_product array. void calculate_inverse_product(int A[], int N, int P) { inverse_product[0] = modInverse(pre_product[0], P); for (int i = 1; i < N; i++) inverse_product[i] = modInverse(pre_product[i], P); } // Function to calculate Product // in the given range. int calculateProduct(int A[], int L, int R, int P) { // As our array is 0 based as and // L and R are given as 1 based index. L = L - 1; R = R - 1; int ans; if (L == 0) ans = pre_product[R]; else ans = pre_product[R] * inverse_product[L - 1]; return ans; } // Driver code public static void main(String[] s) { GFG d = new GFG(); // Array int A[] = { 1, 2, 3, 4, 5, 6 }; // Prime P int P = 113; // Calculating PreProduct and // InverseProduct d.calculate_Pre_Product(A, A.length, P); d.calculate_inverse_product(A, A.length, P); // Range [L, R] in 1 base index int L = 2, R = 5; System.out.println(d.calculateProduct(A, L, R, P)); L = 1; R = 3; System.out.println(d.calculateProduct(A, L, R, P)); } } // This code is contributed by Prerna Saini
Python3
# Python3 implementation of the # above approach # Returns modulo inverse of a with # respect to m using extended Euclid # Algorithm. Assumption: a and m are # coprimes, i.e., gcd(a, m) = 1 def modInverse(a, m): m0, x0, x1 = m, 0, 1 if m == 1: return 0 while a > 1: # q is quotient q = a // m t = m # m is remainder now, process # same as Euclid's algo m, a = a % m, t t = x0 x0 = x1 - q * x0 x1 = t # Make x1 positive if x1 < 0: x1 += m0 return x1 # calculating pre_product array def calculate_Pre_Product(A, N, P): pre_product[0] = A[0] for i in range(1, N): pre_product[i] = pre_product[i - 1] * A[i] pre_product[i] = pre_product[i] % P # Calculating inverse_product # array. def calculate_inverse_product(A, N, P): inverse_product[0] = modInverse(pre_product[0], P) for i in range(1, N): inverse_product[i] = modInverse(pre_product[i], P) # Function to calculate # Product in the given range. def calculateProduct(A, L, R, P): # As our array is 0 based as # and L and R are given as 1 # based index. L = L - 1 R = R - 1 ans = 0 if L == 0: ans = pre_product[R] else: ans = pre_product[R] * inverse_product[L - 1] return ans # Driver Code if __name__ == "__main__": # Array A = [1, 2, 3, 4, 5, 6] N = len(A) # Prime P P = 113 MAX = 100 pre_product = [None] * (MAX) inverse_product = [None] * (MAX) # Calculating PreProduct # and InverseProduct calculate_Pre_Product(A, N, P) calculate_inverse_product(A, N, P) # Range [L, R] in 1 base index L, R = 2, 5 print(calculateProduct(A, L, R, P)) L, R = 1, 3 print(calculateProduct(A, L, R, P)) # This code is contributed by Rituraj Jain
C#
// C# program to find Product // in range Queries in O(1) using System; class GFG { static int MAX = 100; int []pre_product = new int[MAX]; int []inverse_product = new int[MAX]; // Returns modulo inverse of // a with respect to m using // extended Euclid Algorithm // Assumption: a and m are // coprimes, i.e., gcd(a, m) = 1 int modInverse(int a, int m) { int m0 = m, t, q; int x0 = 0, x1 = 1; if (m == 1) return 0; while (a > 1) { // q is quotient q = a / m; t = m; // m is remainder now, process // same as Euclid's algo m = a % m; a = t; t = x0; x0 = x1 - q * x0; x1 = t; } // Make x1 positive if (x1 < 0) x1 += m0; return x1; } // calculating pre_product array void calculate_Pre_Product(int []A, int N, int P) { pre_product[0] = A[0]; for (int i = 1; i < N; i++) { pre_product[i] = pre_product[i - 1] * A[i]; pre_product[i] = pre_product[i] % P; } } // Calculating inverse_product // array. void calculate_inverse_product(int []A, int N, int P) { inverse_product[0] = modInverse(pre_product[0], P); for (int i = 1; i < N; i++) inverse_product[i] = modInverse(pre_product[i], P); } // Function to calculate Product // in the given range. int calculateProduct(int []A, int L, int R, int P) { // As our array is 0 based as // and L and R are given as 1 // based index. L = L - 1; R = R - 1; int ans; if (L == 0) ans = pre_product[R]; else ans = pre_product[R] * inverse_product[L - 1]; return ans; } // Driver code public static void Main() { GFG d = new GFG(); // Array int []A = { 1, 2, 3, 4, 5, 6 }; // Prime P int P = 113; // Calculating PreProduct and // InverseProduct d.calculate_Pre_Product(A, A.Length, P); d.calculate_inverse_product(A, A.Length, P); // Range [L, R] in 1 base index int L = 2, R = 5; Console.WriteLine( d.calculateProduct(A, L, R, P)); L = 1; R = 3; Console.WriteLine( d.calculateProduct(A, L, R, P)); } } // This code is contributed by vt_m.
Javascript
<script> // Javascript program to find Product // in range Queries in O(1) let MAX = 100; let pre_product = new Array(MAX); let inverse_product = new Array(MAX); // Returns modulo inverse of // a with respect to m using // extended Euclid Algorithm // Assumption: a and m are // coprimes, i.e., gcd(a, m) = 1 function modInverse(a, m) { let m0 = m, t, q; let x0 = 0, x1 = 1; if (m == 1) return 0; while (a > 1) { // q is quotient q = parseInt(a / m, 10); t = m; // m is remainder now, process // same as Euclid's algo m = a % m; a = t; t = x0; x0 = x1 - q * x0; x1 = t; } // Make x1 positive if (x1 < 0) x1 += m0; return x1; } // calculating pre_product array function calculate_Pre_Product(A, N, P) { pre_product[0] = A[0]; for (let i = 1; i < N; i++) { pre_product[i] = pre_product[i - 1] * A[i]; pre_product[i] = pre_product[i] % P; } } // Calculating inverse_product // array. function calculate_inverse_product(A, N, P) { inverse_product[0] = modInverse(pre_product[0], P); for (let i = 1; i < N; i++) inverse_product[i] = modInverse(pre_product[i], P); } // Function to calculate Product // in the given range. function calculateProduct(A, L, R, P) { // As our array is 0 based as // and L and R are given as 1 // based index. L = L - 1; R = R - 1; let ans; if (L == 0) ans = pre_product[R]; else ans = pre_product[R] * inverse_product[L - 1]; return ans; } // Array let A = [ 1, 2, 3, 4, 5, 6 ]; // Prime P let P = 113; // Calculating PreProduct and // InverseProduct calculate_Pre_Product(A, A.length, P); calculate_inverse_product(A, A.length, P); // Range [L, R] in 1 base index let L = 2, R = 5; document.write(calculateProduct(A, L, R, P) + "</br>"); L = 1; R = 3; document.write(calculateProduct(A, L, R, P)); </script>
7 6