En términos matemáticos, la secuencia Fn de los números de Fibonacci está definida por la relación de recurrencia
Fn = Fn-1 + Fn-2
con valores semilla
C
//Fibonacci Series using Recursion #include<stdio.h> int fib(int n) { if (n <= 1) return n; return fib(n-1) + fib(n-2); } int main () { int n = 9; printf("%d", fib(n)); getchar(); return 0; }
C
//Fibonacci Series using Dynamic Programming #include<stdio.h> int fib(int n) { /* Declare an array to store Fibonacci numbers. */ int f[n+1]; int i; /* 0th and 1st number of the series are 0 and 1*/ f[0] = 0; f[1] = 1; for (i = 2; i <= n; i++) { /* Add the previous 2 numbers in the series and store it */ f[i] = f[i-1] + f[i-2]; } return f[n]; } int main () { int n = 9; printf("%d", fib(n)); getchar(); return 0; }
C
// Fibonacci Series using Space Optimized Method #include<stdio.h> int fib(int n) { int a = 0, b = 1, c, i; if( n == 0) return a; for (i = 2; i <= n; i++) { c = a + b; a = b; b = c; } return b; } int main () { int n = 9; printf("%d", fib(n)); getchar(); return 0; }
C
#include <stdio.h> /* Helper function that multiplies 2 matrices F and M of size 2*2, and puts the multiplication result back to F[][] */ void multiply(int F[2][2], int M[2][2]); /* Helper function that calculates F[][] raise to the power n and puts the result in F[][] Note that this function is designed only for fib() and won\'t work as general power function */ void power(int F[2][2], int n); int fib(int n) { int F[2][2] = {{1,1},{1,0}}; if (n == 0) return 0; power(F, n-1); return F[0][0]; } void multiply(int F[2][2], int M[2][2]) { int x = F[0][0]*M[0][0] + F[0][1]*M[1][0]; int y = F[0][0]*M[0][1] + F[0][1]*M[1][1]; int z = F[1][0]*M[0][0] + F[1][1]*M[1][0]; int w = F[1][0]*M[0][1] + F[1][1]*M[1][1]; F[0][0] = x; F[0][1] = y; F[1][0] = z; F[1][1] = w; } void power(int F[2][2], int n) { int i; int M[2][2] = {{1,1},{1,0}}; // n - 1 times multiply the matrix to {{1,0},{0,1}} for (i = 2; i <= n; i++) multiply(F, M); } /* Driver program to test above function */ int main() { int n = 9; printf("%d", fib(n)); getchar(); return 0; }
C
#include <stdio.h> void multiply(int F[2][2], int M[2][2]); void power(int F[2][2], int n); /* function that returns nth Fibonacci number */ int fib(int n) { int F[2][2] = {{1,1},{1,0}}; if (n == 0) return 0; power(F, n-1); return F[0][0]; } /* Optimized version of power() in method 4 */ void power(int F[2][2], int n) { if( n == 0 || n == 1) return; int M[2][2] = {{1,1},{1,0}}; power(F, n/2); multiply(F, F); if (n%2 != 0) multiply(F, M); } void multiply(int F[2][2], int M[2][2]) { int x = F[0][0]*M[0][0] + F[0][1]*M[1][0]; int y = F[0][0]*M[0][1] + F[0][1]*M[1][1]; int z = F[1][0]*M[0][0] + F[1][1]*M[1][0]; int w = F[1][0]*M[0][1] + F[1][1]*M[1][1]; F[0][0] = x; F[0][1] = y; F[1][0] = z; F[1][1] = w; } /* Driver program to test above function */ int main() { int n = 9; printf("%d", fib(9)); getchar(); return 0; }
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA