Prerrequisito: Problema de mochila fraccional
los pesos N W máximo
Nota:
C++
// C++ program to solve fractional // Knapsack Problem #include <bits/stdc++.h> using namespace std; // Structure for an item which stores // weight & corresponding value of Item struct Item { int value, weight; // Constructor Item(int value, int weight) : value(value), weight(weight) { } }; // Comparison function to sort Item // according to val/weight ratio bool cmp(struct Item a, struct Item b) { double r1 = (double)a.value / a.weight; double r2 = (double)b.value / b.weight; return r1 > r2; } // Main greedy function to solve problem double fractionalKnapsack(struct Item arr[], int N, int size) { // Sort Item on basis of ratio sort(arr, arr + size, cmp); // Current weight in knapsack int curWeight = 0; // Result (value in Knapsack) double finalvalue = 0.0; // Looping through all Items for (int i = 0; i < size; i++) { // If adding Item won't overflow, // add it completely if (curWeight + arr[i].weight <= N) { curWeight += arr[i].weight; finalvalue += arr[i].value; } // If we can't add current Item, // add fractional part of it else { int remain = N - curWeight; finalvalue += arr[i].value * ((double)remain / arr[i].weight); break; } } // Returning final value return finalvalue; } // Driver Code int main() { // Weight of knapsack int N = 60; // Given weights and values as a pairs Item arr[] = { { 100, 10 }, { 280, 40 }, { 120, 20 }, { 120, 24 } }; int size = sizeof(arr) / sizeof(arr[0]); // Function Call cout << "Maximum profit earned = " << fractionalKnapsack(arr, N, size); return 0; }
C++
// C++ program to Fractional Knapsack // Problem using STL #include <bits/stdc++.h> using namespace std; // Function to find maximum profit void maxProfit(vector<int> profit, vector<int> weight, int N) { // Number of total weights present int numOfElements = profit.size(); int i; // Multimap container to store // ratio and index multimap<double, int> ratio; // Variable to store maximum profit double max_profit = 0; for (i = 0; i < numOfElements; i++) { // Insert ratio profit[i] / weight[i] // and corresponding index ratio.insert(make_pair( (double)profit[i] / weight[i], i)); } // Declare a reverse iterator // for Multimap multimap<double, int>::reverse_iterator it; // Traverse the map in reverse order for (it = ratio.rbegin(); it != ratio.rend(); it++) { // Fraction of weight of i'th item // that can be kept in knapsack double fraction = (double)N / weight[it->second]; // if remaining_weight is greater // than the weight of i'th item if (N >= 0 && N >= weight[it->second]) { // increase max_profit by i'th // profit value max_profit += profit[it->second]; // decrement knapsack to form // new remaining_weight N -= weight[it->second]; } // remaining_weight less than // weight of i'th item else if (N < weight[it->second]) { max_profit += fraction * profit[it->second]; break; } } // Print the maximum profit earned cout << "Maximum profit earned is:" << max_profit; } // Driver Code int main() { // Size of list int size = 4; // Given profit and weight vector<int> profit(size), weight(size); // Profit of items profit[0] = 100, profit[1] = 280, profit[2] = 120, profit[3] = 120; // Weight of items weight[0] = 10, weight[1] = 40, weight[2] = 20, weight[3] = 24; // Capacity of knapsack int N = 60; // Function Call maxProfit(profit, weight, N); }
Publicación traducida automáticamente
Artículo escrito por ishujain18123 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA