Programa C++ para encontrar el K’th elemento más grande en una secuencia

Dada una secuencia infinita de números enteros, encuentre el k-ésimo elemento más grande en cualquier punto del tiempo.
Ejemplo: 

Input:
stream[] = {10, 20, 11, 70, 50, 40, 100, 5, ...}
k = 3

Output:    {_,   _, 10, 11, 20, 40, 50,  50, ...}

El espacio extra permitido es O(k). 

Hemos discutido diferentes enfoques para encontrar el k-ésimo elemento más grande en una array en las siguientes publicaciones. 
K’th elemento más pequeño/más grande en array no ordenada | Establecer 1  
k’ésimo elemento más pequeño/más grande en array sin clasificar | Conjunto 2 (Tiempo lineal esperado)
K’th Elemento más pequeño/más grande en array no ordenada | Conjunto 3 (Tiempo lineal en el peor de los casos)
Aquí tenemos una secuencia en lugar de una array completa y podemos almacenar solo k elementos.

Una solución simple es mantener una array de tamaño k. La idea es mantener la array ordenada de modo que el k-ésimo elemento más grande se pueda encontrar en el tiempo O(1) (solo necesitamos devolver el primer elemento de la array si la array está ordenada en orden creciente) 
Cómo procesar un nuevo elemento de ¿corriente? 
Para cada nuevo elemento en el flujo, verifique si el nuevo elemento es más pequeño que el k-ésimo elemento más grande actual. Si es así, entonces ignóralo. Si no, elimine el elemento más pequeño de la array e inserte un nuevo elemento en orden. La complejidad temporal del procesamiento de un nuevo elemento es O(k).

Una mejor solución es utilizar un árbol de búsqueda binario autoequilibrado de tamaño k. El k’ésimo elemento más grande se puede encontrar en el tiempo O(Logk). 
¿Cómo procesar un nuevo elemento de stream? 
Para cada nuevo elemento en el flujo, verifique si el nuevo elemento es más pequeño que el k-ésimo elemento más grande actual. Si es así, entonces ignóralo. Si no, elimine el elemento más pequeño del árbol e inserte un nuevo elemento. La complejidad temporal del procesamiento de un nuevo elemento es O(Logk).

Una solución eficiente es usar Min Heap de tamaño k para almacenar k elementos más grandes de flujo. El k-ésimo elemento más grande siempre está en la raíz y se puede encontrar en el tiempo O(1). 
¿Cómo procesar un nuevo elemento de flujo? 
Compare el nuevo elemento con la raíz del montón. Si el nuevo elemento es más pequeño, ignórelo. De lo contrario, reemplace la raíz con el nuevo elemento y llame a heapify para la raíz del montón modificado. La complejidad temporal de encontrar el k’ésimo elemento más grande es O(Logk).

CPP

// A C++ program to find k'th
// smallest element in a stream
#include <climits>
#include <iostream>
using namespace std;
 
// Prototype of a utility function
// to swap two integers
void swap(int* x, int* y);
 
// A class for Min Heap
class MinHeap {
    int* harr; // pointer to array of elements in heap
    int capacity; // maximum possible size of min heap
    int heap_size; // Current number of elements in min heap
public:
    MinHeap(int a[], int size); // Constructor
    void buildHeap();
    void MinHeapify(
        int i); // To minheapify subtree rooted with index i
    int parent(int i) { return (i - 1) / 2; }
    int left(int i) { return (2 * i + 1); }
    int right(int i) { return (2 * i + 2); }
    int extractMin(); // extracts root (minimum) element
    int getMin() { return harr[0]; }
 
    // to replace root with new node x and heapify() new
    // root
    void replaceMin(int x)
    {
        harr[0] = x;
        MinHeapify(0);
    }
};
 
MinHeap::MinHeap(int a[], int size)
{
    heap_size = size;
    harr = a; // store address of array
}
 
void MinHeap::buildHeap()
{
    int i = (heap_size - 1) / 2;
    while (i >= 0) {
        MinHeapify(i);
        i--;
    }
}
 
// Method to remove minimum element
// (or root) from min heap
int MinHeap::extractMin()
{
    if (heap_size == 0)
        return INT_MAX;
 
    // Store the minimum value.
    int root = harr[0];
 
    // If there are more than 1 items,
    // move the last item to
    // root and call heapify.
    if (heap_size > 1) {
        harr[0] = harr[heap_size - 1];
        MinHeapify(0);
    }
    heap_size--;
 
    return root;
}
 
// A recursive method to heapify a subtree with root at
// given index This method assumes that the subtrees are
// already heapified
void MinHeap::MinHeapify(int i)
{
    int l = left(i);
    int r = right(i);
    int smallest = i;
    if (l < heap_size && harr[l] < harr[i])
        smallest = l;
    if (r < heap_size && harr[r] < harr[smallest])
        smallest = r;
    if (smallest != i) {
        swap(&harr[i], &harr[smallest]);
        MinHeapify(smallest);
    }
}
 
// A utility function to swap two elements
void swap(int* x, int* y)
{
    int temp = *x;
    *x = *y;
    *y = temp;
}
 
// Function to return k'th largest element from input stream
void kthLargest(int k)
{
    // count is total no. of elements in stream seen so far
    int count = 0, x; // x is for new element
 
    // Create a min heap of size k
    int* arr = new int[k];
    MinHeap mh(arr, k);
 
    while (1) {
        // Take next element from stream
        cout << "Enter next element of stream ";
        cin >> x;
 
        // Nothing much to do for first k-1 elements
        if (count < k - 1) {
            arr[count] = x;
            count++;
        }
 
        else {
            // If this is k'th element, then store it
            // and build the heap created above
            if (count == k - 1) {
                arr[count] = x;
                mh.buildHeap();
            }
 
            else {
                // If next element is greater than
                // k'th largest, then replace the root
                if (x > mh.getMin())
                    mh.replaceMin(x); // replaceMin calls
                                      // heapify()
            }
 
            // Root of heap is k'th largest element
            cout << "K'th largest element is "
                 << mh.getMin() << endl;
            count++;
        }
    }
}
 
// Driver program to test above methods
int main()
{
    int k = 3;
    cout << "K is " << k << endl;
    kthLargest(k);
    return 0;
}

Producción:

K is 3
Enter next element of stream 23
Enter next element of stream 10
Enter next element of stream 15
K'th largest element is 10
Enter next element of stream 70
K'th largest element is 15
Enter next element of stream 5
K'th largest element is 15
Enter next element of stream 80
K'th largest element is 23
Enter next element of stream 100
K'th largest element is 70
Enter next element of stream
CTRL + C pressed

Implementación usando Priority Queue:

CPP

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
vector<int> kthLargest(int k, int arr[], int n)
{
    vector<int> ans(n);
 
    // Creating a min-heap using priority queue
    priority_queue<int, vector<int>, greater<int> > pq;
 
    // Iterating through each element
    for (int i = 0; i < n; i++) {
        // If size of priority
        // queue is less than k
        if (pq.size() < k)
            pq.push(arr[i]);
        else {
            if (arr[i] > pq.top()) {
                pq.pop();
                pq.push(arr[i]);
            }
        }
 
        // If size is less than k
        if (pq.size() < k)
            ans[i] = -1;
        else
            ans[i] = pq.top();
    }
 
    return ans;
}
 
// Driver Code
int main()
{
    int n = 6;
    int arr[n] = { 1, 2, 3, 4, 5, 6 };
    int k = 4;
   
    // Function call
    vector<int> v = kthLargest(k, arr, n);
    for (auto it : v)
        cout << it << " ";
    return 0;
}
Producción

-1 -1 -1 1 2 3 

¡ Consulte el artículo completo sobre el K’th elemento más grande en una secuencia para obtener más detalles!

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *