Dada una array de tamaño n, la tarea es encontrar el Coeficiente de variación . El coeficiente de variación es la relación entre la desviación estándar y la media. El objetivo principal del coeficiente de variación es encontrar un estudio de garantía de calidad midiendo la dispersión de los datos de población de una distribución de probabilidad o frecuencia, o determinando el contenido o la calidad de los datos de muestra de sustancias. El método para medir la relación entre la desviación estándar y la media también se conoce como desviación estándar relativa, a menudo abreviada como RSD.
Ejemplos:
Input : arr[] = {60.25, 62.38, 65.32, 61.41, 63.23} Output : 0.0307144 Input : arr[] = {15, 36, 53.67, 25.45, 67.8, 56, 78.09} Output : 0.48177
Acercarse:
Coefficient of Variation = Standard deviation / mean Example: arr[] = {60.25, 62.38, 65.32, 61.41, 63.23} mean = 62.518 Standard Deviation = 1.9202 Coefficient of Variation = Standard deviation / mean = 1.9202 / 62.518 = 0.0307144
A continuación se muestra la implementación de la fórmula anterior:
C++
// Program to find coefficient of // variation of given array. #include <bits/stdc++.h> using namespace std; // Function to find mean of given array. float mean(float arr[], int n) { float sum = 0; for (int i = 0; i < n; i++) sum = sum + arr[i]; return sum / n; } // Function to find standard deviation // of given array. float standardDeviation(float arr[], int n) { float sum = 0; for (int i = 0; i < n; i++) sum = sum + (arr[i] - mean(arr, n)) * (arr[i] - mean(arr, n)); return sqrt(sum / (n - 1)); } // Function to find coefficient of variation. float coefficientOfVariation(float arr[], int n) { return standardDeviation(arr, n) / mean(arr, n); } // Driver Program int main() { float arr[] = { 15, 36, 53.67, 25.45, 67.8, 56, 78.09 }; int n = sizeof(arr) / sizeof(arr[0]); cout << coefficientOfVariation(arr, n); return 0; }
Java
//Java Program to find coefficient of // variation of given array import java.io.*; class GFG { // Function to find mean of given array. static double mean(double arr[], int n) { double sum = 0; for (int i = 0; i < n; i++) sum = sum + arr[i]; return sum / n; } // Function to find standard // deviation of given array. static double standardDeviation(double arr[], int n) { double sum = 0; for (int i = 0; i < n; i++) sum = sum + (arr[i] - mean(arr, n)) * (arr[i] - mean(arr, n)); return Math.sqrt(sum / (n - 1)); } // Function to find coefficient of variation. static double coefficientOfVariation(double arr[], int n) { return (standardDeviation(arr, n) / mean(arr, n)); } // Driver Program public static void main (String[] args) { double arr[] = { 15, 36, 53.67, 25.45, 67.8, 56, 78.09 }; int n = arr.length; System.out.println( coefficientOfVariation(arr, n)); } } //This article is contributed by vt_m.
Python3
# Program to find coefficient # of variation of given array. import math # Function to find mean of # given array. def mean(arr, n): sum = 0 for i in range(0, n): sum = sum + arr[i] return (sum / n) # Function to find standard # deviation of given array. def standardDeviation(arr, n): sum = 0 for i in range(0, n): sum = (sum + (arr[i] - mean(arr, n)) * (arr[i] - mean(arr, n))) return math.sqrt(sum / (n - 1)) # Function to find coefficient # of variation. def coefficientOfVariation(arr, n): return (standardDeviation(arr, n) / mean(arr, n)) # Driver Program arr = [15, 36, 53.67, 25.45, 67.8, 56, 78.09] n = len(arr) print(round(coefficientOfVariation(arr, n), 5)) # This code is contributed by Smitha Dinesh Semwal
C#
//C# Program to find coefficient of // variation of given array using System; class GFG { // Function to find mean of given array. static float mean(double []arr, int n) { double sum = 0; for (int i = 0; i < n; i++) sum = sum + arr[i]; return (float)sum / n; } // Function to find standard // deviation of given array. static float standardDeviation(double []arr, int n) { double sum = 0; for (int i = 0; i < n; i++) sum = sum + (arr[i] - mean(arr, n)) * (arr[i] - mean(arr, n)); return (float)Math.Sqrt(sum / (n - 1)); } // Function to find coefficient of variation. static float coefficientOfVariation(double []arr, int n) { return(float) (standardDeviation(arr, n) / mean(arr, n)); } // Driver Program public static void Main () { double []arr = { 15, 36, 53.67, 25.45, 67.8, 56, 78.09 }; int n = arr.Length; Console.WriteLine( coefficientOfVariation(arr, n)); } } // This code is contributed by vt_m.
PHP
<?php // Program to find coefficient of // variation of given array. // Function to find mean // of given array. function mean($arr, $n) { $sum = 0; for ($i = 0; $i < $n; $i++) $sum = $sum + $arr[$i]; return $sum /$n; } // Function to find standard // deviation of given array. function standardDeviation($arr, $n) { $sum = 0; for ($i = 0; $i < $n; $i++) $sum = $sum + ($arr[$i] - mean($arr, $n)) * ($arr[$i] - mean($arr, $n)); return sqrt($sum / ($n - 1)); } // Function to find coefficient of variation. function coefficientOfVariation($arr, $n) { return standardDeviation($arr, $n) / mean($arr, $n); } // Driver Code $arr = array( 15, 36, 53.67, 25.45, 67.8, 56, 78.09 ); $n = count($arr); echo coefficientOfVariation($arr, $n); // This code is contributed by vt_m. ?>
Javascript
<script> // JavaScript Program to find coefficient of // variation of given array // Function to find mean of given array. function mean(arr, n) { let sum = 0; for (let i = 0; i < n; i++) sum = sum + arr[i]; return sum / n; } // Function to find standard // deviation of given array. function standardDeviation(arr, n) { let sum = 0; for (let i = 0; i < n; i++) sum = sum + (arr[i] - mean(arr, n)) * (arr[i] - mean(arr, n)); return Math.sqrt(sum / (n - 1)); } // Function to find coefficient of variation. function coefficientOfVariation(arr, n) { return (standardDeviation(arr, n) / mean(arr, n)); } let arr = [ 15, 36, 53.67, 25.45, 67.8, 56, 78.09 ]; let n = arr.length; document.write( coefficientOfVariation(arr, n).toFixed(5)); </script>
Producción:
0.48177
Publicación traducida automáticamente
Artículo escrito por Dharmendra_Kumar y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA