Programa Java para el algoritmo KMP para la búsqueda de patrones

Dado un texto txt[0..n-1] y un patrón pat[0..m-1] , escriba una función search(char pat[], char txt[]) que imprima todas las apariciones de pat[] en txt [] . Puede suponer que n > m .  Ejemplos:

Input:  txt[] = "THIS IS A TEST TEXT"
        pat[] = "TEST"
Output: Pattern found at index 10

Input:  txt[] =  "AABAACAADAABAABA"
        pat[] =  "AABA"
Output: Pattern found at index 0
        Pattern found at index 9
        Pattern found at index 12
 
 

La búsqueda de patrones es un problema importante en informática. Cuando buscamos una string en el bloc de notas/archivo de Word, en el navegador o en la base de datos, se utilizan algoritmos de búsqueda de patrones para mostrar los resultados de la búsqueda. 

Java

// JAVA program for implementation of KMP pattern
// searching algorithm
 
class KMP_String_Matching {
    void KMPSearch(String pat, String txt)
    {
        int M = pat.length();
        int N = txt.length();
 
        // create lps[] that will hold the longest
        // prefix suffix values for pattern
        int lps[] = new int[M];
        int j = 0; // index for pat[]
 
        // Preprocess the pattern (calculate lps[]
        // array)
        computeLPSArray(pat, M, lps);
 
        int i = 0; // index for txt[]
        while (i < N) {
            if (pat.charAt(j) == txt.charAt(i)) {
                j++;
                i++;
            }
            if (j == M) {
                System.out.println("Found pattern "
                                   + "at index " + (i - j));
                j = lps[j - 1];
            }
 
            // mismatch after j matches
            else if (i < N && pat.charAt(j) != txt.charAt(i)) {
                // Do not match lps[0..lps[j-1]] characters,
                // they will match anyway
                if (j != 0)
                    j = lps[j - 1];
                else
                    i = i + 1;
            }
        }
    }
 
    void computeLPSArray(String pat, int M, int lps[])
    {
        // length of the previous longest prefix suffix
        int len = 0;
        int i = 1;
        lps[0] = 0; // lps[0] is always 0
 
        // the loop calculates lps[i] for i = 1 to M-1
        while (i < M) {
            if (pat.charAt(i) == pat.charAt(len)) {
                len++;
                lps[i] = len;
                i++;
            }
            else // (pat[i] != pat[len])
            {
                // This is tricky. Consider the example.
                // AAACAAAA and i = 7. The idea is similar
                // to search step.
                if (len != 0) {
                    len = lps[len - 1];
 
                    // Also, note that we do not increment
                    // i here
                }
                else // if (len == 0)
                {
                    lps[i] = len;
                    i++;
                }
            }
        }
    }
 
    // Driver program to test above function
    public static void main(String args[])
    {
        String txt = "ABABDABACDABABCABAB";
        String pat = "ABABCABAB";
        new KMP_String_Matching().KMPSearch(pat, txt);
    }
}
// This code has been contributed by Amit Khandelwal.
Producción:

Found pattern at index 10

Complejidad del tiempo : O(m+n)

Complejidad espacial : O(m)

Consulte el artículo completo sobre el algoritmo KMP para la búsqueda de patrones para obtener más detalles.

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *