Programa Java para pares tales que uno es un múltiplo de potencia de otro

Nos dan una array A[] de n elementos y un entero positivo k (que no sea 1). Ahora tiene que encontrar el número de pares Ai, Aj tales que Ai = Aj*(k x ) donde x es un número entero. Dado que (k≠1).

Nota: (Ai, Aj) y (Aj, Ai) deben contarse una vez.

Ejemplos:  

Input : A[] = {3, 6, 4, 2},  k = 2
Output : 2
Explanation : We have only two pairs 
(4, 2) and (3, 6)
Input : A[] = {2, 2, 2},   k = 2
Output : 3
Explanation : (2, 2), (2, 2), (2, 2) 
that are (A1, A2), (A2, A3) and (A1, A3) are 
total three pairs where Ai = Aj * (k^0) 

Para resolver este problema, primero ordenamos la array dada y luego para cada elemento Ai, encontramos un número de elementos igual al valor Ai * k^x para diferentes valores de x hasta que Ai * k^x es menor o igual que el mayor de Ai.

Algoritmo:

// Sorting given array
sort(A, A + n);

// for each A[i] traverse rest array
for (int i = 0; i < n; i++) {
    for (int j = i + 1; j < n; j++) {

        // count Aj such that Ai*k^x = Aj
        int x = 0;

        // Increase x till Ai * k^x <=
        // largest element
        while ((A[i] * pow(k, x)) <= A[j]) {
            if ((A[i] * pow(k, x)) == A[j]) {
                ans++;
                break;
            }
            x++;
        }
    }
}
// Returning answer
return ans;

Implementación:

C++

// Program to find pairs count
 
#include <bits/stdc++.h>
 
using namespace std;
 
// Function
// To count the required pairs
int countPairs(int A[], int n, int k)
{
    int ans = 0;
 
    // Sort the given array
    sort(A, A + n);
 
    // for each A[i] traverse rest array
    for (int i = 0; i < n; i++) {
        for (int j = i + 1; j < n; j++) {
 
            // count Aj such that Ai*k^x = Aj
            int x = 0;
 
            // increase x till Ai * k^x <= largest element
            while ((A[i] * pow(k, x)) <= A[j]) {
                if ((A[i] * pow(k, x)) == A[j]) {
                    ans++;
                    break;
                }
                x++;
            }
        }
    }
    return ans;
}
 
// Main driver program
int main()
{
    int A[] = { 3, 8, 9, 12, 18, 4, 24, 2, 6 };
    int n = sizeof(A) / sizeof(A[0]);
    int k = 3;
    cout << countPairs(A, n, k);
    return 0;
}

Java

// Java Program to Find Pairs Count
 
import java.io.*;
import java.util.*;
 
class GFG {
 
    // function to count the required pairs
    static int countPairs(int A[], int n, int k)
    {
        int ans = 0;
 
        // sort the given array
        Arrays.sort(A);
 
        // for each A[i] traverse rest array
        for (int i = 0; i < n; i++) {
            for (int j = i + 1; j < n; j++) {
 
                // count Aj such that Ai*k^x = Aj
                int x = 0;
 
                // increase x till Ai * k^x <= largest
                // element
                while ((A[i] * Math.pow(k, x)) <= A[j]) {
                    if ((A[i] * Math.pow(k, x)) == A[j]) {
                        ans++;
                        break;
                    }
                    x++;
                }
            }
        }
        return ans;
    }
 
    // Driver program
    public static void main(String[] args)
    {
        int A[] = { 3, 8, 9, 12, 18, 4, 24, 2, 6 };
        int n = A.length;
        int k = 3;
        System.out.println(countPairs(A, n, k));
    }
}
 
// This code is contributed by vt_m.

Python3

# Program to find pairs count
import math
 
# function to count the required pairs
 
 
def countPairs(A, n, k):
    ans = 0
 
    # sort the given array
    A.sort()
 
    # for each A[i] traverse rest array
    for i in range(0, n):
 
        for j in range(i + 1, n):
 
            # count Aj such that Ai*k^x = Aj
            x = 0
 
            # increase x till Ai * k^x <= largest element
            while ((A[i] * math.pow(k, x)) <= A[j]):
                if ((A[i] * math.pow(k, x)) == A[j]):
                    ans += 1
                    break
                x += 1
    return ans
 
 
# driver program
A = [3, 8, 9, 12, 18, 4, 24, 2, 6]
n = len(A)
k = 3
 
print(countPairs(A, n, k))
 
# This code is contributed by
# Smitha Dinesh Semwal

C#

// C# program to find pairs count
using System;
 
class GFG {
 
    // function to count the required pairs
    static int countPairs(int[] A, int n, int k)
    {
        int ans = 0;
 
        // sort the given array
        Array.Sort(A);
 
        // for each A[i] traverse rest array
        for (int i = 0; i < n; i++) {
            for (int j = i + 1; j < n; j++) {
 
                // count Aj such that Ai*k^x = Aj
                int x = 0;
 
                // increase x till Ai * k^x <= largest
                // element
                while ((A[i] * Math.Pow(k, x)) <= A[j]) {
                    if ((A[i] * Math.Pow(k, x)) == A[j]) {
                        ans++;
                        break;
                    }
                    x++;
                }
            }
        }
        return ans;
    }
 
    // Driver program
    public static void Main()
    {
        int[] A = { 3, 8, 9, 12, 18, 4, 24, 2, 6 };
        int n = A.Length;
        int k = 3;
        Console.WriteLine(countPairs(A, n, k));
    }
}
 
// This code is contributed by vt_m.

PHP

<?php
// PHP Program to find pairs count
 
// function to count
// the required pairs
function countPairs($A, $n, $k)
{
$ans = 0;
 
// sort the given array
sort($A);
 
// for each A[i]
// traverse rest array
for ($i = 0; $i < $n; $i++)
{
    for ($j = $i + 1; $j < $n; $j++)
    {
 
    // count Aj such that Ai*k^x = Aj
    $x = 0;
 
    // increase x till Ai *
    // k^x <= largest element
    while (($A[$i] * pow($k, $x)) <= $A[$j])
    {
        if (($A[$i] * pow($k, $x)) == $A[$j])
        {
        $ans++;
        break;
        }
        $x++;
    }
    }
}
return $ans;
}
 
// Driver Code
 
$A = array(3, 8, 9, 12, 18,
            4, 24, 2, 6);
$n = count($A);
$k = 3;
echo countPairs($A, $n, $k);
 
// This code is contributed by anuj_67.
?>

Javascript

<script>
 
// Javascript Program to find pairs count
 
// function to count the required pairs
function countPairs(A, n, k) {
var ans = 0;
 
// sort the given array
A.sort((a,b)=>a-b)
 
// for each A[i] traverse rest array
for (var i = 0; i < n; i++) {
    for (var j = i + 1; j < n; j++) {
 
    // count Aj such that Ai*k^x = Aj
    var x = 0;
 
    // increase x till Ai * k^x <= largest element
    while ((A[i] * Math.pow(k, x)) <= A[j]) {
        if ((A[i] * Math.pow(k, x)) == A[j]) {
        ans++;
        break;
        }
        x++;
    }
    }
}
return ans;
}
 
// driver program
var A = [3, 8, 9, 12, 18, 4, 24, 2, 6];
var n = A.length;
var k = 3;
document.write( countPairs(A, n, k));
 
// This code is contributed by rutvik_56.
</script>
Producción

6

Complejidad del tiempo:

Espacio Auxiliar:

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *