Dada una array cuadrada, la tarea es verificar que la array esté en forma triangular superior o no. Una array cuadrada se llama triangular superior si todas las entradas debajo de la diagonal principal son cero.
Ejemplos:
Input : mat[4][4] = {{1, 3, 5, 3}, {0, 4, 6, 2}, {0, 0, 2, 5}, {0, 0, 0, 6}}; Output : Matrix is in Upper Triangular form. Input : mat[4][4] = {{5, 6, 3, 6}, {0, 4, 6, 6}, {1, 0, 8, 5}, {0, 1, 0, 6}}; Output : Matrix is not in Upper Triangular form.
Implementación:
C++
// Program to check upper triangular matrix. #include <bits/stdc++.h> #define N 4 using namespace std; // Function to check matrix is in upper triangular // form or not. bool isUpperTriangularMatrix(int mat[N][N]) { for (int i = 1; i < N; i++) for (int j = 0; j < i; j++) if (mat[i][j] != 0) return false; return true; } // Driver function. int main() { int mat[N][N] = { { 1, 3, 5, 3 }, { 0, 4, 6, 2 }, { 0, 0, 2, 5 }, { 0, 0, 0, 6 } }; if (isUpperTriangularMatrix(mat)) cout << "Yes"; else cout << "No"; return 0; }
Java
// Java Program to check upper // triangular matrix. import java.util.*; import java.lang.*; public class GfG { private static final int N = 4; // Function to check matrix is in // upper triangular form or not. public static Boolean isUpperTriangularMatrix(int mat[][]) { for (int i = 1; i < N ; i++) for (int j = 0; j < i; j++) if (mat[i][j] != 0) return false; return true; } // driver function public static void main(String argc[]){ int[][] mat= { { 1, 3, 5, 3 }, { 0, 4, 6, 2 }, { 0, 0, 2, 5 }, { 0, 0, 0, 6 } }; if (isUpperTriangularMatrix(mat)) System.out.println("Yes"); else System.out.println("No"); } } /* This code is contributed by Sagar Shukla */
Python3
# Python3 Program to check upper # triangular matrix. # Function to check matrix # is in upper triangular def isuppertriangular(M): for i in range(1, len(M)): for j in range(0, i): if(M[i][j] != 0): return False return True # Driver function. M = [[1,3,5,3], [0,4,6,2], [0,0,2,5], [0,0,0,6]] if isuppertriangular(M): print ("Yes") else: print ("No") # This code is contributed by Anurag Rawat
C#
// C# Program to check upper // triangular matrix. using System; public class GfG { private static int N = 4; // Function to check matrix is in // upper triangular form or not. public static bool isUpperTriangularMatrix(int [,]mat) { for (int i = 1; i < N ; i++) for (int j = 0; j < i; j++) if (mat[i, j] != 0) return false; return true; } // Driver function public static void Main(){ int [,]mat= { { 1, 3, 5, 3 }, { 0, 4, 6, 2 }, { 0, 0, 2, 5 }, { 0, 0, 0, 6 } }; if (isUpperTriangularMatrix(mat)) Console.WriteLine("Yes"); else Console.WriteLine("No"); } } /* This code is contributed by vt_m */
PHP
<?php // PHP Program to check upper // triangular matrix. $N = 4; // Function to check matrix is // in upper triangular form or // not. function isUpperTriangularMatrix($mat) { global $N; for ($i = 1; $i < $N; $i++) for ($j = 0; $j < $i; $j++) if ($mat[$i][$j] != 0) return false; return true; } // Driver Code $mat = array(array(1, 3, 5, 3), array(0, 4, 6, 2) , array(0, 0, 2, 5), array(0, 0, 0, 6)); if (isUpperTriangularMatrix($mat)) echo "Yes"; else echo"No"; // This code is contributed by anuj_67. ?>
Javascript
<script> // Java script Program to check upper // triangular matrix. let N = 4; // Function to check matrix is in // upper triangular form or not. function isUpperTriangularMatrix(mat) { for (let i = 1; i < N ; i++) for (let j = 0; j < i; j++) if (mat[i][j] != 0) return false; return true; } // driver function let mat= [[1, 3, 5, 3 ], [ 0, 4, 6, 2 ], [ 0, 0, 2, 5 ], [ 0, 0, 0, 6 ]]; if (isUpperTriangularMatrix(mat)) document.write("Yes"); else document.write("No"); // contributed by sravan kumar </script>
Producción
Yes
Complejidad Temporal: O(n 2 ), donde n representa el número de filas y columnas de la array.
Espacio auxiliar: O(1) , no se requiere espacio adicional, por lo que es una constante.
Publicación traducida automáticamente
Artículo escrito por Dharmendra_Kumar y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA