programa para imprimir patron numerico – Part 1

Dado el valor de n, es decir, el número de filas, imprima el siguiente patrón.
Ejemplos: 
 

Input : n = 4
Output :
1
5 2
8 6 3
10 9 7 4

Input : n = 6
Output :
1
7 2
12 8 3
16 13 9 4
19 17 14 10 5
21 20 18 15 11 6

Enfoque: El enfoque es comenzar a imprimir el patrón desde el final de cada fila. Después de completar la última columna de cada fila, comience desde la penúltima columna de la segunda fila y así sucesivamente. A continuación se muestra la implementación de este enfoque:
 

C++

// C++ program to print the pattern
#include <bits/stdc++.h>
using namespace std;
 
// Function to print pattern
// for given value of n
void pattern(int n)
{
    int p, k = 1;
     
    // Outer "for" loop for number of rows
    for (int i = 1; i <= n; i++) {
         
        // set the value of "p" as "k".
        p = k;
 
        // Inner "for" loop for number of columns
        for (int j = 1; j <= i; j++) {
             
            // print the values
            cout << p << " ";
             
            // change in value of "p" for
            // every elements after the first
            // element of each row .
            p = p - (n + j - i);
        }
        cout << endl;
 
        // value of "k" for first
        // element of every row.
        k = k + 1 + n - i;
    }
}
 
// Driver Code
int main()
{
    int n = 5;
 
    // Function calling
    pattern(n);
 
    return 0;
}

Java

// Java program to print the given pattern
import java.util.*;
 
class GfG {
 
    // Function to print pattern for
    // given value of n
    static void pattern(int n)
    {
        int p, k = 1;
         
        // Outer "for" loop for number of rows
        for (int i = 1; i <= n; i++) {
             
            // set the value of "p" as "k".
            p = k;
 
            // Inner "for" loop for number of columns
            for (int j = 1; j <= i; j++) {
                 
                // print the values
                System.out.print(p);
                System.out.print(" ");
                 
                // change in value of "p" for
                // every elements after the
                // first element of each row .
                p = p - (n + j - i);
            }
             
            // Print the next line
            System.out.println();
 
            // value of "k" for first
            // element of every row.
            k = k + 1 + n - i;
        }
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int n = 5;
 
        // Function calling
        pattern(n);
    }
}

Python 3

# Python 3 program to print the pattern
 
# Function to print pattern
# for given value of n
def pattern(n):
 
    k = 1
     
    # Outer "for" loop for number of rows
    for i in range(1 , n+1):
         
        # set the value of "p" as "k".
        p = k
 
        # Inner "for" loop for number of columns
        for j in range(1 , i+1):
             
            # print the values
            print(p , end=" ")
             
            # change in value of "p" for
            # every elements after the first
            # element of each row .
            p = p - (n + j - i)
         
        print("")
        # value of "k" for first
        # element of every row.
        k = k + 1 + n - i
     
# Driver Code
n = 5
 
# Function calling
pattern(n)
 
# This code is contributed by Smitha

C#

// C# program to print the given pattern
using System;
 
class GfG {
 
    // Function to print pattern for
    // given value of n
    static void pattern(int n)
    {
        int p, k = 1;
         
        // Outer "for" loop for number
        // of rows
        for (int i = 1; i <= n; i++) {
             
            // set the value of "p" as "k".
            p = k;
 
            // Inner "for" loop for number
            // of columns
            for (int j = 1; j <= i; j++) {
                 
                // print the values
                Console.Write(p);
                Console.Write(" ");
                 
                // change in value of "p" for
                // every elements after the
                // first element of each row .
                p = p - (n + j - i);
            }
             
            // Print the next line
            Console.WriteLine();
 
            // value of "k" for first
            // element of every row.
            k = k + 1 + n - i;
        }
    }
 
    // Driver Code
    public static void Main()
    {
        int n = 5;
 
        // Function calling
        pattern(n);
    }
}
 
// This code is contributed by anuj_67.

PHP

<?php
// PHP program to print the pattern
 
// Function to print pattern for
// given value of n
function pattern($n)
{
    $p;
    $k = 1;
     
    // Outer "for" loop for number of rows
    for($i = 1; $i <= $n; $i++)
    {
        // set the value of "p" as "k".
        $p = $k;
         
        // Inner "for" loop for number of columns
        for($j = 1; $j <= $i; $j++)
        {
            // print the values
            echo $p;
            echo " ";
             
            // change in value of "p" for
            // every elements after the
            // first element of each row .
            $p = $p - ($n + $j - $i);
        }
        echo "\n";
         
        // value of "k" for first
        // element of every row.
        $k = $k + 1 + $n - $i;
    }
}
 
// Driver Code
 
$n = 5;
 
// Function calling
pattern($n);
 
?>

Javascript

<script>
 
// JavaScript program to print the pattern
 
      // Function to print pattern
      // for given value of n
      function pattern(n) {
        var p, k = 1;
 
        // Outer "for" loop for number of rows
        for (var i = 1; i <= n; i++) {
         
          // set the value of "p" as "k".
          p = k;
 
          // Inner "for" loop for number of columns
          for (var j = 1; j <= i; j++) {
           
            // print the values
            document.write(p + "  ");
 
            // change in value of "p" for
            // every elements after the first
            // element of each row .
            p = p - (n + j - i);
          }
          document.write("<br>");
 
          // value of "k" for first
          // element of every row.
          k = k + 1 + n - i;
        }
      }
 
      // Driver Code
      var n = 5;
       
      // Function calling
      pattern(n);
       
</script>

Producción : 

1
6 2
10 7 3
13 11 8 4
15 14 12 9 5

Publicación traducida automáticamente

Artículo escrito por ukasp y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *