Propagación perezosa en el árbol de segmentos

El árbol de segmentos se introdujo en una publicación anterior con un ejemplo de problema de suma de rangos. Hemos utilizado el mismo problema de «Suma del rango dado» para explicar la propagación perezosa 
 

CPP

/* A recursive function to update the nodes which have the given
   index in their range. The following are parameters
    tree[] --> segment tree
    si     -->  index of current node in segment tree.
                Initial value is passed as 0.
    ss and se --> Starting and ending indexes of array elements 
                  covered under this node of segment tree.
                  Initial values passed as 0 and n-1.
    i    --> index of the element to be updated. This index 
            is in input array.
   diff --> Value to be added to all nodes which have array
            index i in range */
void updateValueUtil(int tree[], int ss, int se, int i, 
                     int diff, int si)
{
    // Base Case: If the input index lies outside the range
    // of this segment
    if (i < ss || i > se)
        return;
   
    // If the input index is in range of this node, then
    // update the value of the node and its children
    st[si] = st[si] + diff;
    if (se != ss)
    {
        int mid = getMid(ss, se);
        updateValueUtil(st, ss, mid, i, diff, 2*si + 1);
        updateValueUtil(st, mid+1, se, i, diff, 2*si + 2);
    }
}

CPP

/* Function to update segment tree for range update in input 
array.
    si -> index of current node in segment tree
    ss and se -> Starting and ending indexes of elements for
                which current nodes stores sum.
    us and ue -> starting and ending indexes of update query
    diff -> which we need to add in the range us to ue */
void updateRangeUtil(int si, int ss, int se, int us,
                    int ue, int diff)
{
    // out of range
    if (ss>se || ss>ue || se<us)
        return ;
  
    // Current node is a leaf node
    if (ss==se)
    {
        // Add the difference to current node
        tree[si] += diff;
        return;
    }
  
    // If not a leaf node, recur for children.
    int mid = (ss+se)/2;
    updateRangeUtil(si*2+1, ss, mid, us, ue, diff);
    updateRangeUtil(si*2+2, mid+1, se, us, ue, diff);
  
    // Use the result of children calls to update this
    // node
    tree[si] = tree[si*2+1] + tree[si*2+2];
}

C++

// Program to show segment tree to demonstrate lazy
// propagation
#include <stdio.h>
#include <math.h>
#define MAX 1000
  
// Ideally, we should not use global variables and large
// constant-sized arrays, we have done it here for simplicity.
int tree[MAX] = {0};  // To store segment tree
int lazy[MAX] = {0};  // To store pending updates
  
/*  si -> index of current node in segment tree
    ss and se -> Starting and ending indexes of elements for
                 which current nodes stores sum.
    us and ue -> starting and ending indexes of update query
    diff -> which we need to add in the range us to ue */
void updateRangeUtil(int si, int ss, int se, int us,
                     int ue, int diff)
{
    // If lazy value is non-zero for current node of segment
    // tree, then there are some pending updates. So we need
    // to make sure that the pending updates are done before
    // making new updates. Because this value may be used by
    // parent after recursive calls (See last line of this
    // function)
    if (lazy[si] != 0)
    {
        // Make pending updates using value stored in lazy
        // nodes
        tree[si] += (se-ss+1)*lazy[si];
  
        // checking if it is not leaf node because if
        // it is leaf node then we cannot go further
        if (ss != se)
        {
            // We can postpone updating children we don't
            // need their new values now.
            // Since we are not yet updating children of si,
            // we need to set lazy flags for the children
            lazy[si*2 + 1]   += lazy[si];
            lazy[si*2 + 2]   += lazy[si];
        }
  
        // Set the lazy value for current node as 0 as it
        // has been updated
        lazy[si] = 0;
    }
  
    // out of range
    if (ss>se || ss>ue || se<us)
        return ;
  
    // Current segment is fully in range
    if (ss>=us && se<=ue)
    {
        // Add the difference to current node
        tree[si] += (se-ss+1)*diff;
  
        // same logic for checking leaf node or not
        if (ss != se)
        {
            // This is where we store values in lazy nodes,
            // rather than updating the segment tree itself
            // Since we don't need these updated values now
            // we postpone updates by storing values in lazy[]
            lazy[si*2 + 1]   += diff;
            lazy[si*2 + 2]   += diff;
        }
        return;
    }
  
    // If not completely in rang, but overlaps, recur for
    // children,
    int mid = (ss+se)/2;
    updateRangeUtil(si*2+1, ss, mid, us, ue, diff);
    updateRangeUtil(si*2+2, mid+1, se, us, ue, diff);
  
    // And use the result of children calls to update this
    // node
    tree[si] = tree[si*2+1] + tree[si*2+2];
}
  
// Function to update a range of values in segment
// tree
/*  us and eu -> starting and ending indexes of update query
    ue  -> ending index of update query
    diff -> which we need to add in the range us to ue */
void updateRange(int n, int us, int ue, int diff)
{
   updateRangeUtil(0, 0, n-1, us, ue, diff);
}
  
  
/*  A recursive function to get the sum of values in given
    range of the array. The following are parameters for
    this function.
    si --> Index of current node in the segment tree.
           Initially 0 is passed as root is always at'
           index 0
    ss & se  --> Starting and ending indexes of the
                 segment represented by current node,
                 i.e., tree[si]
    qs & qe  --> Starting and ending indexes of query
                 range */
int getSumUtil(int ss, int se, int qs, int qe, int si)
{
    // If lazy flag is set for current node of segment tree,
    // then there are some pending updates. So we need to
    // make sure that the pending updates are done before
    // processing the sub sum query
    if (lazy[si] != 0)
    {
        // Make pending updates to this node. Note that this
        // node represents sum of elements in arr[ss..se] and
        // all these elements must be increased by lazy[si]
        tree[si] += (se-ss+1)*lazy[si];
  
        // checking if it is not leaf node because if
        // it is leaf node then we cannot go further
        if (ss != se)
        {
            // Since we are not yet updating children os si,
            // we need to set lazy values for the children
            lazy[si*2+1] += lazy[si];
            lazy[si*2+2] += lazy[si];
        }
  
        // unset the lazy value for current node as it has
        // been updated
        lazy[si] = 0;
    }
  
    // Out of range
    if (ss>se || ss>qe || se<qs)
        return 0;
  
    // At this point we are sure that pending lazy updates
    // are done for current node. So we can return value 
    // (same as it was for query in our previous post)
  
    // If this segment lies in range
    if (ss>=qs && se<=qe)
        return tree[si];
  
    // If a part of this segment overlaps with the given
    // range
    int mid = (ss + se)/2;
    return getSumUtil(ss, mid, qs, qe, 2*si+1) +
           getSumUtil(mid+1, se, qs, qe, 2*si+2);
}
  
// Return sum of elements in range from index qs (query
// start) to qe (query end).  It mainly uses getSumUtil()
int getSum(int n, int qs, int qe)
{
    // Check for erroneous input values
    if (qs < 0 || qe > n-1 || qs > qe)
    {
        printf("Invalid Input");
        return -1;
    }
  
    return getSumUtil(0, n-1, qs, qe, 0);
}
  
// A recursive function that constructs Segment Tree for
//  array[ss..se]. si is index of current node in segment
// tree st.
void constructSTUtil(int arr[], int ss, int se, int si)
{
    // out of range as ss can never be greater than se
    if (ss > se)
        return ;
  
    // If there is one element in array, store it in
    // current node of segment tree and return
    if (ss == se)
    {
        tree[si] = arr[ss];
        return;
    }
  
    // If there are more than one elements, then recur
    // for left and right subtrees and store the sum
    // of values in this node
    int mid = (ss + se)/2;
    constructSTUtil(arr, ss, mid, si*2+1);
    constructSTUtil(arr, mid+1, se, si*2+2);
  
    tree[si] = tree[si*2 + 1] + tree[si*2 + 2];
}
  
/* Function to construct segment tree from given array.
   This function allocates memory for segment tree and
   calls constructSTUtil() to fill the allocated memory */
void constructST(int arr[], int n)
{
    // Fill the allocated memory st
    constructSTUtil(arr, 0, n-1, 0);
}
  
  
// Driver program to test above functions
int main()
{
    int arr[] = {1, 3, 5, 7, 9, 11};
    int n = sizeof(arr)/sizeof(arr[0]);
  
    // Build segment tree from given array
    constructST(arr, n);
  
    // Print sum of values in array from index 1 to 3
    printf("Sum of values in given range = %d\n",
           getSum(n, 1, 3));
  
    // Add 10 to all nodes at indexes from 1 to 5.
    updateRange(n, 1, 5, 10);
  
    // Find sum after the value is updated
    printf("Updated sum of values in given range = %d\n",
            getSum( n, 1, 3));
  
    return 0;
}

Java

// Java program to demonstrate lazy propagation in segment tree
class LazySegmentTree
{
    final int MAX = 1000;     // Max tree size
    int tree[] = new int[MAX]; // To store segment tree
    int lazy[] = new int[MAX]; // To store pending updates
  
    /* si -> index of current node in segment tree
        ss and se -> Starting and ending indexes of elements for
                    which current nodes stores sum.
        us and eu -> starting and ending indexes of update query
        ue -> ending index of update query
        diff -> which we need to add in the range us to ue */
    void updateRangeUtil(int si, int ss, int se, int us,
                        int ue, int diff)
    {
        // If lazy value is non-zero for current node of segment
        // tree, then there are some pending updates. So we need
        // to make sure that the pending updates are done before
        // making new updates. Because this value may be used by
        // parent after recursive calls (See last line of this
        // function)
        if (lazy[si] != 0)
        {
            // Make pending updates using value stored in lazy
            // nodes
            tree[si] += (se - ss + 1) * lazy[si];
  
            // checking if it is not leaf node because if
            // it is leaf node then we cannot go further
            if (ss != se)
            {
                // We can postpone updating children we don't
                // need their new values now.
                // Since we are not yet updating children of si,
                // we need to set lazy flags for the children
                lazy[si * 2 + 1] += lazy[si];
                lazy[si * 2 + 2] += lazy[si];
            }
  
            // Set the lazy value for current node as 0 as it
            // has been updated
            lazy[si] = 0;
        }
  
        // out of range
        if (ss > se || ss > ue || se < us)
            return;
  
        // Current segment is fully in range
        if (ss >= us && se <= ue)
        {
            // Add the difference to current node
            tree[si] += (se - ss + 1) * diff;
  
            // same logic for checking leaf node or not
            if (ss != se)
            {
                // This is where we store values in lazy nodes,
                // rather than updating the segment tree itself
                // Since we don't need these updated values now
                // we postpone updates by storing values in lazy[]
                lazy[si * 2 + 1] += diff;
                lazy[si * 2 + 2] += diff;
            }
            return;
        }
  
        // If not completely in rang, but overlaps, recur for
        // children,
        int mid = (ss + se) / 2;
        updateRangeUtil(si * 2 + 1, ss, mid, us, ue, diff);
        updateRangeUtil(si * 2 + 2, mid + 1, se, us, ue, diff);
  
        // And use the result of children calls to update this
        // node
        tree[si] = tree[si * 2 + 1] + tree[si * 2 + 2];
    }
  
    // Function to update a range of values in segment
    // tree
    /* us and eu -> starting and ending indexes of update query
        ue -> ending index of update query
        diff -> which we need to add in the range us to ue */
    void updateRange(int n, int us, int ue, int diff) {
        updateRangeUtil(0, 0, n - 1, us, ue, diff);
    }
  
    /* A recursive function to get the sum of values in given
        range of the array. The following are parameters for
        this function.
        si --> Index of current node in the segment tree.
            Initially 0 is passed as root is always at'
            index 0
        ss & se --> Starting and ending indexes of the
                    segment represented by current node,
                    i.e., tree[si]
        qs & qe --> Starting and ending indexes of query
                    range */
    int getSumUtil(int ss, int se, int qs, int qe, int si)
    {
        // If lazy flag is set for current node of segment tree,
        // then there are some pending updates. So we need to
        // make sure that the pending updates are done before
        // processing the sub sum query
        if (lazy[si] != 0)
        {
            // Make pending updates to this node. Note that this
            // node represents sum of elements in arr[ss..se] and
            // all these elements must be increased by lazy[si]
            tree[si] += (se - ss + 1) * lazy[si];
  
            // checking if it is not leaf node because if
            // it is leaf node then we cannot go further
            if (ss != se)
            {
                // Since we are not yet updating children os si,
                // we need to set lazy values for the children
                lazy[si * 2 + 1] += lazy[si];
                lazy[si * 2 + 2] += lazy[si];
            }
  
            // unset the lazy value for current node as it has
            // been updated
            lazy[si] = 0;
        }
  
        // Out of range
        if (ss > se || ss > qe || se < qs)
            return 0;
  
        // At this point sure, pending lazy updates are done
        // for current node. So we can return value (same as
        // was for query in our previous post)
  
        // If this segment lies in range
        if (ss >= qs && se <= qe)
            return tree[si];
  
        // If a part of this segment overlaps with the given
        // range
        int mid = (ss + se) / 2;
        return getSumUtil(ss, mid, qs, qe, 2 * si + 1) +
            getSumUtil(mid + 1, se, qs, qe, 2 * si + 2);
    }
  
    // Return sum of elements in range from index qs (query
    // start) to qe (query end). It mainly uses getSumUtil()
    int getSum(int n, int qs, int qe)
    {
        // Check for erroneous input values
        if (qs < 0 || qe > n - 1 || qs > qe)
        {
            System.out.println("Invalid Input");
            return -1;
        }
  
        return getSumUtil(0, n - 1, qs, qe, 0);
    }
  
    /* A recursive function that constructs Segment Tree for
    array[ss..se]. si is index of current node in segment
    tree st. */
    void constructSTUtil(int arr[], int ss, int se, int si)
    {
        // out of range as ss can never be greater than se
        if (ss > se)
            return;
  
        /* If there is one element in array, store it in
        current node of segment tree and return */
        if (ss == se)
        {
            tree[si] = arr[ss];
            return;
        }
  
        /* If there are more than one elements, then recur
        for left and right subtrees and store the sum
        of values in this node */
        int mid = (ss + se) / 2;
        constructSTUtil(arr, ss, mid, si * 2 + 1);
        constructSTUtil(arr, mid + 1, se, si * 2 + 2);
  
        tree[si] = tree[si * 2 + 1] + tree[si * 2 + 2];
    }
  
    /* Function to construct segment tree from given array.
    This function allocates memory for segment tree and
    calls constructSTUtil() to fill the allocated memory */
    void constructST(int arr[], int n)
    {
        // Fill the allocated memory st
        constructSTUtil(arr, 0, n - 1, 0);
    }
  
  
    // Driver program to test above functions
    public static void main(String args[])
    {
        int arr[] = {1, 3, 5, 7, 9, 11};
        int n = arr.length;
        LazySegmentTree tree = new LazySegmentTree();
  
        // Build segment tree from given array
        tree.constructST(arr, n);
  
        // Print sum of values in array from index 1 to 3
        System.out.println("Sum of values in given range = " +
                        tree.getSum(n, 1, 3));
  
        // Add 10 to all nodes at indexes from 1 to 5.
        tree.updateRange(n, 1, 5, 10);
  
        // Find sum after the value is updated
        System.out.println("Updated sum of values in given range = " +
                        tree.getSum(n, 1, 3));
    }
}
// This Code is contributed by Ankur Narain Verma

Python3

# Python3 implementation of the approach 
MAX = 1000
  
# Ideally, we should not use global variables 
# and large constant-sized arrays, we have 
# done it here for simplicity. 
tree = [0] * MAX; # To store segment tree 
lazy = [0] * MAX; # To store pending updates 
  
""" si -> index of current node in segment tree 
    ss and se -> Starting and ending indexes of elements 
                for which current nodes stores sum. 
    us and ue -> starting and ending indexes of update query 
    diff -> which we need to add in the range us to ue """
def updateRangeUtil(si, ss, se, us, ue, diff) : 
  
    # If lazy value is non-zero for current node
    # of segment tree, then there are some 
    # pending updates. So we need to make sure 
    # that the pending updates are done before 
    # making new updates. Because this value may be 
    # used by parent after recursive calls 
    # (See last line of this function) 
    if (lazy[si] != 0) :
          
        # Make pending updates using value 
        # stored in lazy nodes 
        tree[si] += (se - ss + 1) * lazy[si]; 
  
        # checking if it is not leaf node because if 
        # it is leaf node then we cannot go further 
        if (ss != se) :
          
            # We can postpone updating children we don't 
            # need their new values now. 
            # Since we are not yet updating children of si, 
            # we need to set lazy flags for the children 
            lazy[si * 2 + 1] += lazy[si]; 
            lazy[si * 2 + 2] += lazy[si]; 
          
        # Set the lazy value for current node 
        # as 0 as it has been updated 
        lazy[si] = 0; 
      
    # out of range 
    if (ss > se or ss > ue or se < us) :
        return ; 
  
    # Current segment is fully in range 
    if (ss >= us and se <= ue) :
          
        # Add the difference to current node 
        tree[si] += (se - ss + 1) * diff; 
  
        # same logic for checking leaf node or not 
        if (ss != se) :
          
            # This is where we store values in lazy nodes, 
            # rather than updating the segment tree itself 
            # Since we don't need these updated values now 
            # we postpone updates by storing values in lazy[] 
            lazy[si * 2 + 1] += diff; 
            lazy[si * 2 + 2] += diff; 
          
        return; 
  
    # If not completely in rang, but overlaps, 
    # recur for children, 
    mid = (ss + se) // 2; 
    updateRangeUtil(si * 2 + 1, ss,
                    mid, us, ue, diff); 
    updateRangeUtil(si * 2 + 2, mid + 1, 
                    se, us, ue, diff); 
  
    # And use the result of children calls 
    # to update this node 
    tree[si] = tree[si * 2 + 1] + \
            tree[si * 2 + 2]; 
  
# Function to update a range of values 
# in segment tree 
  
''' us and eu -> starting and ending indexes 
                of update query 
    ue -> ending index of update query 
    diff -> which we need to add in the range us to ue '''
def updateRange(n, us, ue, diff) :
    updateRangeUtil(0, 0, n - 1, us, ue, diff); 
  
''' A recursive function to get the sum of values 
    in given range of the array. The following are 
    parameters for this function. 
    si --> Index of current node in the segment tree. 
        Initially 0 is passed as root is always at' 
        index 0 
    ss & se --> Starting and ending indexes of the 
                segment represented by current node, 
                i.e., tree[si] 
    qs & qe --> Starting and ending indexes of query 
                range '''
def getSumUtil(ss, se, qs, qe, si) : 
  
    # If lazy flag is set for current node 
    # of segment tree, then there are 
    # some pending updates. So we need to 
    # make sure that the pending updates are 
    # done before processing the sub sum query 
    if (lazy[si] != 0) :
      
        # Make pending updates to this node. 
        # Note that this node represents sum of 
        # elements in arr[ss..se] and all these 
        # elements must be increased by lazy[si] 
        tree[si] += (se - ss + 1) * lazy[si]; 
  
        # checking if it is not leaf node because if 
        # it is leaf node then we cannot go further 
        if (ss != se) :
          
            # Since we are not yet updating children os si, 
            # we need to set lazy values for the children 
            lazy[si * 2 + 1] += lazy[si]; 
            lazy[si * 2 + 2] += lazy[si]; 
  
        # unset the lazy value for current node 
        # as it has been updated 
        lazy[si] = 0; 
  
    # Out of range 
    if (ss > se or ss > qe or se < qs) :
        return 0; 
  
    # At this point we are sure that 
    # pending lazy updates are done for 
    # current node. So we can return value
    # (same as it was for query in our previous post) 
  
    # If this segment lies in range 
    if (ss >= qs and se <= qe) :
        return tree[si]; 
  
    # If a part of this segment overlaps 
    # with the given range 
    mid = (ss + se) // 2; 
    return (getSumUtil(ss, mid, qs, qe, 2 * si + 1) +
            getSumUtil(mid + 1, se, qs, qe, 2 * si + 2)); 
  
# Return sum of elements in range from 
# index qs (query start) to qe (query end). 
# It mainly uses getSumUtil() 
def getSum(n, qs, qe) :
      
    # Check for erroneous input values 
    if (qs < 0 or qe > n - 1 or qs > qe) :
        print("Invalid Input"); 
        return -1; 
  
    return getSumUtil(0, n - 1, qs, qe, 0); 
  
# A recursive function that constructs 
# Segment Tree for array[ss..se]. 
# si is index of current node in segment 
# tree st. 
def constructSTUtil(arr, ss, se, si) : 
  
    # out of range as ss can never be
    # greater than se 
    if (ss > se) :
        return ; 
  
    # If there is one element in array, 
    # store it in current node of 
    # segment tree and return 
    if (ss == se) :
      
        tree[si] = arr[ss]; 
        return; 
      
    # If there are more than one elements, 
    # then recur for left and right subtrees 
    # and store the sum of values in this node 
    mid = (ss + se) // 2; 
    constructSTUtil(arr, ss, mid, si * 2 + 1); 
    constructSTUtil(arr, mid + 1, se, si * 2 + 2); 
  
    tree[si] = tree[si * 2 + 1] + tree[si * 2 + 2]; 
  
''' Function to construct segment tree 
from given array. This function allocates memory 
for segment tree and calls constructSTUtil() 
to fill the allocated memory '''
def constructST(arr, n) : 
      
    # Fill the allocated memory st 
    constructSTUtil(arr, 0, n - 1, 0); 
      
# Driver Code
if __name__ == "__main__" : 
  
    arr = [1, 3, 5, 7, 9, 11]; 
    n = len(arr); 
  
    # Build segment tree from given array 
    constructST(arr, n); 
  
    # Print sum of values in array from index 1 to 3 
    print("Sum of values in given range =",
                        getSum(n, 1, 3)); 
  
    # Add 10 to all nodes at indexes from 1 to 5. 
    updateRange(n, 1, 5, 10); 
  
    # Find sum after the value is updated 
    print("Updated sum of values in given range =",
                                getSum( n, 1, 3)); 
  
# This code is contributed by AnkitRai01

C#

// C# program to demonstrate lazy
// propagation in segment tree 
using System;
  
public class LazySegmentTree 
{ 
    static readonly int MAX = 1000; // Max tree size 
    int []tree = new int[MAX]; // To store segment tree 
    int []lazy = new int[MAX]; // To store pending updates 
  
    /* si -> index of current node in segment tree 
        ss and se -> Starting and ending indexes of elements for 
                    which current nodes stores sum. 
        us and eu -> starting and ending indexes of update query 
        ue -> ending index of update query 
        diff -> which we need to add in the range us to ue */
    void updateRangeUtil(int si, int ss, int se, int us, 
                        int ue, int diff) 
    { 
        // If lazy value is non-zero 
        // for current node of segment 
        // tree, then there are some 
        // pending updates. So we need 
        // to make sure that the pending
        // updates are done before making
        // new updates. Because this 
        // value may be used by parent
        // after recursive calls (See last 
        // line of this function) 
        if (lazy[si] != 0) 
        { 
            // Make pending updates using value 
            // stored in lazy nodes 
            tree[si] += (se - ss + 1) * lazy[si]; 
  
            // checking if it is not leaf node because if 
            // it is leaf node then we cannot go further 
            if (ss != se) 
            { 
                // We can postpone updating children 
                // we don't need their new values now. 
                // Since we are not yet updating children of si, 
                // we need to set lazy flags for the children 
                lazy[si * 2 + 1] += lazy[si]; 
                lazy[si * 2 + 2] += lazy[si]; 
            } 
  
            // Set the lazy value for current node 
            // as 0 as it has been updated 
            lazy[si] = 0; 
        } 
  
        // out of range 
        if (ss > se || ss > ue || se < us) 
            return; 
  
        // Current segment is fully in range 
        if (ss >= us && se <= ue) 
        { 
            // Add the difference to current node 
            tree[si] += (se - ss + 1) * diff; 
  
            // same logic for checking leaf node or not 
            if (ss != se) 
            { 
                // This is where we store values in lazy nodes, 
                // rather than updating the segment tree itself 
                // Since we don't need these updated values now 
                // we postpone updates by storing values in lazy[] 
                lazy[si * 2 + 1] += diff; 
                lazy[si * 2 + 2] += diff; 
            } 
            return; 
        } 
  
        // If not completely in rang, but 
        // overlaps, recur for children, 
        int mid = (ss + se) / 2; 
        updateRangeUtil(si * 2 + 1, ss, mid, us, ue, diff); 
        updateRangeUtil(si * 2 + 2, mid + 1, se, us, ue, diff); 
  
        // And use the result of children calls to update this 
        // node 
        tree[si] = tree[si * 2 + 1] + tree[si * 2 + 2]; 
    } 
  
    // Function to update a range of values in segment 
    // tree 
    /* us and eu -> starting and ending indexes of update query 
        ue -> ending index of update query 
        diff -> which we need to add in the range us to ue */
    void updateRange(int n, int us, int ue, int diff)
    { 
        updateRangeUtil(0, 0, n - 1, us, ue, diff); 
    } 
  
    /* A recursive function to get the sum of values in given 
        range of the array. The following are parameters for 
        this function. 
        si --> Index of current node in the segment tree. 
            Initially 0 is passed as root is always at' 
            index 0 
        ss & se --> Starting and ending indexes of the 
                    segment represented by current node, 
                    i.e., tree[si] 
        qs & qe --> Starting and ending indexes of query 
                    range */
    int getSumUtil(int ss, int se, int qs,
                            int qe, int si) 
    { 
        // If lazy flag is set for current node
        // of segment tree, then there are
        // some pending updates. So we need to 
        // make sure that the pending updates
        // are done before processing
        // the sub sum query 
        if (lazy[si] != 0) 
        { 
            // Make pending updates to this 
            // node. Note that this node 
            // represents sum of elements
            // in arr[ss..se] and all these
            // elements must be increased by lazy[si] 
            tree[si] += (se - ss + 1) * lazy[si]; 
  
            // checking if it is not leaf node because if 
            // it is leaf node then we cannot go further 
            if (ss != se) 
            { 
                // Since we are not yet 
                // updating children os si, 
                // we need to set lazy values
                // for the children 
                lazy[si * 2 + 1] += lazy[si]; 
                lazy[si * 2 + 2] += lazy[si]; 
            } 
  
            // unset the lazy value for current 
            // node as it has been updated 
            lazy[si] = 0; 
        } 
  
        // Out of range 
        if (ss > se || ss > qe || se < qs) 
            return 0; 
  
        // At this point sure, pending lazy updates are done 
        // for current node. So we can return value (same as 
        // was for query in our previous post) 
  
        // If this segment lies in range 
        if (ss >= qs && se <= qe) 
            return tree[si]; 
  
        // If a part of this segment overlaps 
        // with the given range 
        int mid = (ss + se) / 2; 
        return getSumUtil(ss, mid, qs, qe, 2 * si + 1) + 
            getSumUtil(mid + 1, se, qs, qe, 2 * si + 2); 
    } 
  
    // Return sum of elements in range from index qs (query 
    // start) to qe (query end). It mainly uses getSumUtil() 
    int getSum(int n, int qs, int qe) 
    { 
        // Check for erroneous input values 
        if (qs < 0 || qe > n - 1 || qs > qe) 
        { 
            Console.WriteLine("Invalid Input"); 
            return -1; 
        } 
  
        return getSumUtil(0, n - 1, qs, qe, 0); 
    } 
  
    /* A recursive function that constructs
    Segment Tree for array[ss..se]. si is 
    index of current node in segment 
    tree st. */
    void constructSTUtil(int []arr, int ss, int se, int si) 
    { 
        // out of range as ss can 
        // never be greater than se 
        if (ss > se) 
            return; 
  
        /* If there is one element in array, store it in 
        current node of segment tree and return */
        if (ss == se) 
        { 
            tree[si] = arr[ss]; 
            return; 
        } 
  
        /* If there are more than one elements, then recur 
        for left and right subtrees and store the sum 
        of values in this node */
        int mid = (ss + se) / 2; 
        constructSTUtil(arr, ss, mid, si * 2 + 1); 
        constructSTUtil(arr, mid + 1, se, si * 2 + 2); 
  
        tree[si] = tree[si * 2 + 1] + tree[si * 2 + 2]; 
    } 
  
    /* Function to construct segment tree from given array. 
    This function allocates memory for segment tree and 
    calls constructSTUtil() to fill the allocated memory */
    void constructST(int []arr, int n) 
    { 
        // Fill the allocated memory st 
        constructSTUtil(arr, 0, n - 1, 0); 
    } 
  
  
    // Driver program to test above functions 
    public static void Main(String []args) 
    { 
        int []arr = {1, 3, 5, 7, 9, 11}; 
        int n = arr.Length; 
        LazySegmentTree tree = new LazySegmentTree(); 
  
        // Build segment tree from given array 
        tree.constructST(arr, n); 
  
        // Print sum of values in array from index 1 to 3 
        Console.WriteLine("Sum of values in given range = " + 
                        tree.getSum(n, 1, 3)); 
  
        // Add 10 to all nodes at indexes from 1 to 5. 
        tree.updateRange(n, 1, 5, 10); 
  
        // Find sum after the value is updated 
        Console.WriteLine("Updated sum of values in given range = " + 
                        tree.getSum(n, 1, 3)); 
    } 
} 
  
// This code contributed by Rajput-Ji

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *