Puntos de articulación (o vértices de corte) en un gráfico

Un vértice en un grafo conectado no dirigido es un punto de articulación (o vértice de corte) si al eliminarlo (y los bordes a través de él) se desconecta el grafo. Los puntos de articulación representan vulnerabilidades en una red conectada: puntos únicos cuya falla dividiría la red en 2 o más componentes. Son útiles para diseñar redes fiables. 

Para un gráfico no dirigido desconectado, un punto de articulación es la eliminación de un vértice que aumenta el número de componentes conectados.

A continuación se muestran algunos gráficos de ejemplo con puntos de articulación rodeados de color rojo. 
 

Articulation Points or Cut Vertices in a Graph

Articulation Points or Cut Vertices in a Graph

Articulation Points or Cut Vertices in a Graph

Enfoque ingenuo: un enfoque simple es eliminar uno por uno todos los vértices y ver si la eliminación de un vértice causa un gráfico desconectado. Los siguientes son pasos de enfoque simple para gráfico conectado.

Para cada vértice v, haz lo siguiente:

  • Eliminar v del gráfico 
  • Ver si el gráfico permanece conectado (Podemos usar BFS o DFS) 
  • Agregue v de nuevo al gráfico

Complejidad temporal: O(V*(V+E)) para un gráfico representado mediante una lista de adyacencia.

Enfoque eficiente (usando DFS): la idea es usar DFS (búsqueda primero en profundidad). En DFS, seguimos vértices en forma de árbol llamado árbol DFS. En el árbol DFS, un vértice u es el padre de otro vértice v, si v es descubierto por u (obviamente, v es un adyacente de u en el gráfico). 

En el árbol DFS, un vértice u es un punto de articulación si se cumple una de las dos condiciones siguientes. 

  1. u es la raíz del árbol DFS y tiene al menos dos hijos. 
  2. u no es la raíz del árbol DFS y tiene un hijo v tal que ningún vértice en el subárbol enraizado con v tiene un borde posterior a uno de los ancestros (en el árbol DFS) de u.

La siguiente figura muestra los mismos puntos que arriba con un punto adicional de que una hoja en DFS Tree nunca puede ser un punto de articulación.

leaf in DFS Tree can never be an articulation point

Hacemos un recorrido DFS del gráfico dado con código adicional para encontrar puntos de articulación (AP). En DFS transversal, mantenemos una array padre[] donde padre[u] almacena el padre del vértice u. Entre los dos casos mencionados anteriormente, el primer caso es fácil de detectar. Para cada vértice, cuente los niños. Si el vértice visitado actualmente u es raíz (el padre [u] es NIL) y tiene más de dos hijos, imprímalo. 

¿Cómo manejar el segundo caso? El segundo caso es más complicado. Mantenemos un array disc[] para almacenar el tiempo de descubrimiento de los vértices. Para cada Node u, necesitamos encontrar el vértice visitado más antiguo (el vértice con un tiempo de descubrimiento mínimo) al que se puede llegar desde el subárbol enraizado con u. Entonces mantenemos una array adicional low[] que se define de la siguiente manera.  

low[u] = min(disc[u], disc[w]) 
where w is an ancestor of u and there is a back edge from 
some descendant of u to w.

A continuación se muestra la implementación del algoritmo de Tarjan para encontrar puntos de articulación. 

C++

// C++ program to find articulation points in an undirected graph
#include <bits/stdc++.h>
using namespace std;
 
// A recursive function that find articulation
// points using DFS traversal
// adj[] --> Adjacency List representation of the graph
// u --> The vertex to be visited next
// visited[] --> keeps track of visited vertices
// disc[] --> Stores discovery times of visited vertices
// low[] -- >> earliest visited vertex (the vertex with minimum
// discovery time) that can be reached from subtree
// rooted with current vertex
// parent --> Stores the parent vertex in DFS tree
// isAP[] --> Stores articulation points
void APUtil(vector<int> adj[], int u, bool visited[],
            int disc[], int low[], int& time, int parent,
            bool isAP[])
{
    // Count of children in DFS Tree
    int children = 0;
 
    // Mark the current node as visited
    visited[u] = true;
 
    // Initialize discovery time and low value
    disc[u] = low[u] = ++time;
 
    // Go through all vertices adjacent to this
    for (auto v : adj[u]) {
        // If v is not visited yet, then make it a child of u
        // in DFS tree and recur for it
        if (!visited[v]) {
            children++;
            APUtil(adj, v, visited, disc, low, time, u, isAP);
 
            // Check if the subtree rooted with v has
            // a connection to one of the ancestors of u
            low[u] = min(low[u], low[v]);
 
            // If u is not root and low value of one of
            // its child is more than discovery value of u.
            if (parent != -1 && low[v] >= disc[u])
                isAP[u] = true;
        }
 
        // Update low value of u for parent function calls.
        else if (v != parent)
            low[u] = min(low[u], disc[v]);
    }
 
    // If u is root of DFS tree and has two or more children.
    if (parent == -1 && children > 1)
        isAP[u] = true;
}
 
void AP(vector<int> adj[], int V)
{
    int disc[V] = { 0 };
    int low[V];
    bool visited[V] = { false };
    bool isAP[V] = { false };
    int time = 0, par = -1;
 
    // Adding this loop so that the
    // code works even if we are given
    // disconnected graph
    for (int u = 0; u < V; u++)
        if (!visited[u])
            APUtil(adj, u, visited, disc, low,
                   time, par, isAP);
 
    // Printing the APs
    for (int u = 0; u < V; u++)
        if (isAP[u] == true)
            cout << u << " ";
}
 
// Utility function to add an edge
void addEdge(vector<int> adj[], int u, int v)
{
    adj[u].push_back(v);
    adj[v].push_back(u);
}
 
int main()
{
    // Create graphs given in above diagrams
    cout << "Articulation points in first graph \n";
    int V = 5;
    vector<int> adj1[V];
    addEdge(adj1, 1, 0);
    addEdge(adj1, 0, 2);
    addEdge(adj1, 2, 1);
    addEdge(adj1, 0, 3);
    addEdge(adj1, 3, 4);
    AP(adj1, V);
 
    cout << "\nArticulation points in second graph \n";
    V = 4;
    vector<int> adj2[V];
    addEdge(adj2, 0, 1);
    addEdge(adj2, 1, 2);
    addEdge(adj2, 2, 3);
    AP(adj2, V);
 
    cout << "\nArticulation points in third graph \n";
    V = 7;
    vector<int> adj3[V];
    addEdge(adj3, 0, 1);
    addEdge(adj3, 1, 2);
    addEdge(adj3, 2, 0);
    addEdge(adj3, 1, 3);
    addEdge(adj3, 1, 4);
    addEdge(adj3, 1, 6);
    addEdge(adj3, 3, 5);
    addEdge(adj3, 4, 5);
    AP(adj3, V);
 
    return 0;
}

Java

// A Java program to find articulation
// points in an undirected graph
import java.util.*;
 
class Graph {
 
    static int time;
 
    static void addEdge(ArrayList<ArrayList<Integer> > adj, int u, int v)
    {
        adj.get(u).add(v);
        adj.get(v).add(u);
    }
 
    static void APUtil(ArrayList<ArrayList<Integer> > adj, int u,
                       boolean visited[], int disc[], int low[],
                       int parent, boolean isAP[])
    {
        // Count of children in DFS Tree
        int children = 0;
 
        // Mark the current node as visited
        visited[u] = true;
 
        // Initialize discovery time and low value
        disc[u] = low[u] = ++time;
 
        // Go through all vertices adjacent to this
        for (Integer v : adj.get(u)) {
            // If v is not visited yet, then make it a child of u
            // in DFS tree and recur for it
            if (!visited[v]) {
                children++;
                APUtil(adj, v, visited, disc, low, u, isAP);
 
                // Check if the subtree rooted with v has
                // a connection to one of the ancestors of u
                low[u] = Math.min(low[u], low[v]);
 
                // If u is not root and low value of one of
                // its child is more than discovery value of u.
                if (parent != -1 && low[v] >= disc[u])
                    isAP[u] = true;
            }
 
            // Update low value of u for parent function calls.
            else if (v != parent)
                low[u] = Math.min(low[u], disc[v]);
        }
 
        // If u is root of DFS tree and has two or more children.
        if (parent == -1 && children > 1)
            isAP[u] = true;
    }
 
    static void AP(ArrayList<ArrayList<Integer> > adj, int V)
    {
        boolean[] visited = new boolean[V];
        int[] disc = new int[V];
        int[] low = new int[V];
        boolean[] isAP = new boolean[V];
        int time = 0, par = -1;
 
        // Adding this loop so that the
        // code works even if we are given
        // disconnected graph
        for (int u = 0; u < V; u++)
            if (visited[u] == false)
                APUtil(adj, u, visited, disc, low, par, isAP);
 
        for (int u = 0; u < V; u++)
            if (isAP[u] == true)
                System.out.print(u + " ");
        System.out.println();
    }
 
    public static void main(String[] args)
    {
 
        // Creating first example graph
        int V = 5;
        ArrayList<ArrayList<Integer> > adj1 =
                         new ArrayList<ArrayList<Integer> >(V);
        for (int i = 0; i < V; i++)
            adj1.add(new ArrayList<Integer>());
        addEdge(adj1, 1, 0);
        addEdge(adj1, 0, 2);
        addEdge(adj1, 2, 1);
        addEdge(adj1, 0, 3);
        addEdge(adj1, 3, 4);
        System.out.println("Articulation points in first graph");
        AP(adj1, V);
 
        // Creating second example graph
        V = 4;
        ArrayList<ArrayList<Integer> > adj2 =
                         new ArrayList<ArrayList<Integer> >(V);
        for (int i = 0; i < V; i++)
            adj2.add(new ArrayList<Integer>());
 
        addEdge(adj2, 0, 1);
        addEdge(adj2, 1, 2);
        addEdge(adj2, 2, 3);
 
        System.out.println("Articulation points in second graph");
        AP(adj2, V);
 
        // Creating third example graph
        V = 7;
        ArrayList<ArrayList<Integer> > adj3 =
                            new ArrayList<ArrayList<Integer> >(V);
        for (int i = 0; i < V; i++)
            adj3.add(new ArrayList<Integer>());
 
        addEdge(adj3, 0, 1);
        addEdge(adj3, 1, 2);
        addEdge(adj3, 2, 0);
        addEdge(adj3, 1, 3);
        addEdge(adj3, 1, 4);
        addEdge(adj3, 1, 6);
        addEdge(adj3, 3, 5);
        addEdge(adj3, 4, 5);
 
        System.out.println("Articulation points in third graph");
 
        AP(adj3, V);
    }
}

Python3

# Python program to find articulation points in an undirected graph
  
from collections import defaultdict
  
# This class represents an undirected graph
# using adjacency list representation
class Graph:
  
    def __init__(self, vertices):
        self.V = vertices # No. of vertices
        self.graph = defaultdict(list) # default dictionary to store graph
        self.Time = 0
  
    # function to add an edge to graph
    def addEdge(self, u, v):
        self.graph[u].append(v)
        self.graph[v].append(u)
  
    '''A recursive function that find articulation points
    using DFS traversal
    u --> The vertex to be visited next
    visited[] --> keeps track of visited vertices
    disc[] --> Stores discovery times of visited vertices
    parent[] --> Stores parent vertices in DFS tree
    ap[] --> Store articulation points'''
    def APUtil(self, u, visited, ap, parent, low, disc):
 
        # Count of children in current node
        children = 0
 
        # Mark the current node as visited and print it
        visited[u]= True
 
        # Initialize discovery time and low value
        disc[u] = self.Time
        low[u] = self.Time
        self.Time += 1
 
        # Recur for all the vertices adjacent to this vertex
        for v in self.graph[u]:
            # If v is not visited yet, then make it a child of u
            # in DFS tree and recur for it
            if visited[v] == False :
                parent[v] = u
                children += 1
                self.APUtil(v, visited, ap, parent, low, disc)
 
                # Check if the subtree rooted with v has a connection to
                # one of the ancestors of u
                low[u] = min(low[u], low[v])
 
                # u is an articulation point in following cases
                # (1) u is root of DFS tree and has two or more children.
                if parent[u] == -1 and children > 1:
                    ap[u] = True
 
                #(2) If u is not root and low value of one of its child is more
                # than discovery value of u.
                if parent[u] != -1 and low[v] >= disc[u]:
                    ap[u] = True   
                     
                # Update low value of u for parent function calls   
            elif v != parent[u]:
                low[u] = min(low[u], disc[v])
 
 
    # The function to do DFS traversal. It uses recursive APUtil()
    def AP(self):
  
        # Mark all the vertices as not visited
        # and Initialize parent and visited,
        # and ap(articulation point) arrays
        visited = [False] * (self.V)
        disc = [float("Inf")] * (self.V)
        low = [float("Inf")] * (self.V)
        parent = [-1] * (self.V)
        ap = [False] * (self.V) # To store articulation points
 
        # Call the recursive helper function
        # to find articulation points
        # in DFS tree rooted with vertex 'i'
        for i in range(self.V):
            if visited[i] == False:
                self.APUtil(i, visited, ap, parent, low, disc)
 
        for index, value in enumerate (ap):
            if value == True: print (index,end=" ")
 
 # Create a graph given in the above diagram
g1 = Graph(5)
g1.addEdge(1, 0)
g1.addEdge(0, 2)
g1.addEdge(2, 1)
g1.addEdge(0, 3)
g1.addEdge(3, 4)
  
print ("\nArticulation points in first graph ")
g1.AP()
 
g2 = Graph(4)
g2.addEdge(0, 1)
g2.addEdge(1, 2)
g2.addEdge(2, 3)
print ("\nArticulation points in second graph ")
g2.AP()
 
  
g3 = Graph (7)
g3.addEdge(0, 1)
g3.addEdge(1, 2)
g3.addEdge(2, 0)
g3.addEdge(1, 3)
g3.addEdge(1, 4)
g3.addEdge(1, 6)
g3.addEdge(3, 5)
g3.addEdge(4, 5)
print ("\nArticulation points in third graph ")
g3.AP()
 
# This code is contributed by Neelam Yadav

C#

// A C# program to find articulation
// points in an undirected graph
using System;
using System.Collections.Generic;
 
// This class represents an undirected graph
// using adjacency list representation
public class Graph {
    private int V; // No. of vertices
 
    // Array of lists for Adjacency List Representation
    private List<int>[] adj;
    int time = 0;
    static readonly int NIL = -1;
 
    // Constructor
    Graph(int v)
    {
        V = v;
        adj = new List<int>[v];
        for (int i = 0; i < v; ++i)
            adj[i] = new List<int>();
    }
 
    // Function to add an edge into the graph
    void addEdge(int v, int w)
    {
        adj[v].Add(w); // Add w to v's list.
        adj[w].Add(v); // Add v to w's list
    }
 
    // A recursive function that find articulation points using DFS
    // u --> The vertex to be visited next
    // visited[] --> keeps track of visited vertices
    // disc[] --> Stores discovery times of visited vertices
    // parent[] --> Stores parent vertices in DFS tree
    // ap[] --> Store articulation points
    void APUtil(int u, bool[] visited, int[] disc,
                int[] low, int[] parent, bool[] ap)
    {
 
        // Count of children in DFS Tree
        int children = 0;
 
        // Mark the current node as visited
        visited[u] = true;
 
        // Initialize discovery time and low value
        disc[u] = low[u] = ++time;
 
        // Go through all vertices adjacent to this
        foreach(int i in adj[u])
        {
            int v = i; // v is current adjacent of u
 
            // If v is not visited yet, then make it a child of u
            // in DFS tree and recur for it
            if (!visited[v]) {
                children++;
                parent[v] = u;
                APUtil(v, visited, disc, low, parent, ap);
 
                // Check if the subtree rooted with v has
                // a connection to one of the ancestors of u
                low[u] = Math.Min(low[u], low[v]);
 
                // u is an articulation point in following cases
 
                // (1) u is root of DFS tree and has two or more children.
                if (parent[u] == NIL && children > 1)
                    ap[u] = true;
 
                // (2) If u is not root and low value of one of its child
                // is more than discovery value of u.
                if (parent[u] != NIL && low[v] >= disc[u])
                    ap[u] = true;
            }
 
            // Update low value of u for parent function calls.
            else if (v != parent[u])
                low[u] = Math.Min(low[u], disc[v]);
        }
    }
 
    // The function to do DFS traversal.
    // It uses recursive function APUtil()
    void AP()
    {
        // Mark all the vertices as not visited
        bool[] visited = new bool[V];
        int[] disc = new int[V];
        int[] low = new int[V];
        int[] parent = new int[V];
        bool[] ap = new bool[V]; // To store articulation points
 
        // Initialize parent and visited, and
        // ap(articulation point) arrays
        for (int i = 0; i < V; i++) {
            parent[i] = NIL;
            visited[i] = false;
            ap[i] = false;
        }
 
        // Call the recursive helper function to find articulation
        // points in DFS tree rooted with vertex 'i'
        for (int i = 0; i < V; i++)
            if (visited[i] == false)
                APUtil(i, visited, disc, low, parent, ap);
 
        // Now ap[] contains articulation points, print them
        for (int i = 0; i < V; i++)
            if (ap[i] == true)
                Console.Write(i + " ");
    }
 
    // Driver method
    public static void Main(String[] args)
    {
        // Create graphs given in above diagrams
        Console.WriteLine("Articulation points in first graph ");
        Graph g1 = new Graph(5);
        g1.addEdge(1, 0);
        g1.addEdge(0, 2);
        g1.addEdge(2, 1);
        g1.addEdge(0, 3);
        g1.addEdge(3, 4);
        g1.AP();
        Console.WriteLine();
 
        Console.WriteLine("Articulation points in Second graph");
        Graph g2 = new Graph(4);
        g2.addEdge(0, 1);
        g2.addEdge(1, 2);
        g2.addEdge(2, 3);
        g2.AP();
        Console.WriteLine();
 
        Console.WriteLine("Articulation points in Third graph ");
        Graph g3 = new Graph(7);
        g3.addEdge(0, 1);
        g3.addEdge(1, 2);
        g3.addEdge(2, 0);
        g3.addEdge(1, 3);
        g3.addEdge(1, 4);
        g3.addEdge(1, 6);
        g3.addEdge(3, 5);
        g3.addEdge(4, 5);
        g3.AP();
    }
}
 
// This code is contributed by PrinciRaj1992

Javascript

<script>
// A Javascript program to find articulation points in an undirected graph
 
// This class represents an undirected graph using adjacency list
// representation
class Graph
{
    // Constructor
    constructor(v)
    {
        this.V = v;
        this.adj = new Array(v);
        this.NIL = -1;
        this.time = 0;
        for (let i=0; i<v; ++i)
            this.adj[i] = [];
    }
     
    //Function to add an edge into the graph
    addEdge(v, w)
    {
        this.adj[v].push(w);  // Add w to v's list.
        this.adj[w].push(v);    //Add v to w's list
    }
     
    // A recursive function that find articulation points using DFS
    // u --> The vertex to be visited next
    // visited[] --> keeps track of visited vertices
    // disc[] --> Stores discovery times of visited vertices
    // parent[] --> Stores parent vertices in DFS tree
    // ap[] --> Store articulation points
    APUtil(u, visited, disc, low, parent, ap)
    {
        // Count of children in DFS Tree
        let children = 0;
  
        // Mark the current node as visited
        visited[u] = true;
  
        // Initialize discovery time and low value
        disc[u] = low[u] = ++this.time;
  
        // Go through all vertices adjacent to this
         
        for(let i of this.adj[u])
        {
            let v = i;  // v is current adjacent of u
  
            // If v is not visited yet, then make it a child of u
            // in DFS tree and recur for it
            if (!visited[v])
            {
                children++;
                parent[v] = u;
                this.APUtil(v, visited, disc, low, parent, ap);
  
                // Check if the subtree rooted with v has a connection to
                // one of the ancestors of u
                low[u]  = Math.min(low[u], low[v]);
  
                // u is an articulation point in following cases
  
                // (1) u is root of DFS tree and has two or more children.
                if (parent[u] == this.NIL && children > 1)
                    ap[u] = true;
  
                // (2) If u is not root and low value of one of its child
                // is more than discovery value of u.
                if (parent[u] != this.NIL && low[v] >= disc[u])
                    ap[u] = true;
            }
  
            // Update low value of u for parent function calls.
            else if (v != parent[u])
                low[u]  = Math.min(low[u], disc[v]);
        }
    }
     
    // The function to do DFS traversal. It uses recursive function APUtil()
    AP()
    {
        // Mark all the vertices as not visited
        let visited = new Array(this.V);
        let disc = new Array(this.V);
        let low = new Array(this.V);
        let parent = new Array(this.V);
        let ap = new Array(this.V); // To store articulation points
  
        // Initialize parent and visited, and ap(articulation point)
        // arrays
        for (let i = 0; i < this.V; i++)
        {
            parent[i] = this.NIL;
            visited[i] = false;
            ap[i] = false;
        }
  
        // Call the recursive helper function to find articulation
        // points in DFS tree rooted with vertex 'i'
        for (let i = 0; i < this.V; i++)
            if (visited[i] == false)
                this.APUtil(i, visited, disc, low, parent, ap);
  
        // Now ap[] contains articulation points, print them
        for (let i = 0; i < this.V; i++)
            if (ap[i] == true)
                document.write(i+" ");
    }
}
 
// Driver method
// Create graphs given in above diagrams
document.write("Articulation points in first graph  <br>");
let g1 = new Graph(5);
g1.addEdge(1, 0);
g1.addEdge(0, 2);
g1.addEdge(2, 1);
g1.addEdge(0, 3);
g1.addEdge(3, 4);
g1.AP();
document.write("<br>");
 
document.write("Articulation points in Second graph <br>");
let g2 = new Graph(4);
g2.addEdge(0, 1);
g2.addEdge(1, 2);
g2.addEdge(2, 3);
g2.AP();
document.write("<br>");
 
document.write("Articulation points in Third graph  <br>");
let g3 = new Graph(7);
g3.addEdge(0, 1);
g3.addEdge(1, 2);
g3.addEdge(2, 0);
g3.addEdge(1, 3);
g3.addEdge(1, 4);
g3.addEdge(1, 6);
g3.addEdge(3, 5);
g3.addEdge(4, 5);
g3.AP();
 
 
// This code is contributed by avanitrachhadiya2155
</script>
Producción

Articulation points in first graph 
0 3 
Articulation points in second graph 
1 2 
Articulation points in third graph 
1 

Complejidad de tiempo: la función anterior es DFS simple con arrays adicionales. Entonces, la complejidad del tiempo es la misma que DFS, que es O (V + E) para la representación de la lista de adyacencia del gráfico.

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *