PyQtGraph: configuración de máscara en vista de imagen

En este artículo, veremos cómo podemos configurar la máscara para el objeto de vista de imagen en  PyQTGaph . El  gráfico PyQt es una biblioteca de gráficos e interfaz de usuario para Python que proporciona la funcionalidad comúnmente requerida en el diseño y las aplicaciones científicas. Sus objetivos principales son proporcionar gráficos rápidos e interactivos para mostrar datos (gráficos, videos, etc.). Los widgets se utilizan para mostrar y analizar datos de imágenes, implementan muchas funciones, como mostrar datos de imágenes en 2D y 3D. Para datos 3D, se muestra un control deslizante del eje z que permite al usuario seleccionar qué cuadro se mostrará. Muestra un histograma de datos de imagen con una región móvil que define los niveles oscuros/claros, el degradado editable proporciona una tabla de búsqueda de colores. La máscara oculta la parte seleccionada de la vista de la imagen, la vista de la imagen seguirá ahí pero el usuario no podrá verla, es decir, habrá una máscara en ella. Solo la región seleccionada será visible para otras regiones que tendrán una máscara. 

Podemos crear una vista de imagen con la ayuda del comando que se indica a continuación. 

# creating a pyqtgraph image view object
imv = pg.ImageView()

Para establecer una máscara en una vista de imagen, usamos el método setMask() con el objeto de vista de imagen.

Sintaxis: imv.setMask (región)
Argumento: toma el objeto QRion como argumento
Retorno: devuelve Ninguno 

A continuación se muestra el programa para establecer una máscara en una vista de imagen utilizando el módulo PyQTGraph :

Python3

# importing Qt widgets
from PyQt5.QtWidgets import *
 
# importing system
import sys
 
# importing numpy as np
import numpy as np
 
# importing pyqtgraph as pg
import pyqtgraph as pg
from PyQt5.QtGui import *
from PyQt5.QtCore import *
 
 
 
# Image View class
class ImageView(pg.ImageView):
 
    # constructor which inherit original
    # ImageView
    def __init__(self, *args, **kwargs):
        pg.ImageView.__init__(self, *args, **kwargs)
 
 
         
class Window(QMainWindow):
 
    def __init__(self):
        super().__init__()
 
        # setting title
        self.setWindowTitle("PyQtGraph")
 
        # setting geometry
        self.setGeometry(100, 100, 600, 500)
 
        # icon
        icon = QIcon("skin.png")
 
        # setting icon to the window
        self.setWindowIcon(icon)
 
        # calling method
        self.UiComponents()
 
        # showing all the widgets
        self.show()
 
        # setting fixed size of window
        #self.setFixedSize(QSize(600, 500))
 
    # method for components
    def UiComponents(self):
 
        # creating a widget object
        widget = QWidget()
 
        # creating a label
        label = QLabel("Geeksforgeeks Image View")
 
        # setting minimum width
        label.setMinimumWidth(130)
 
        # making label do word wrap
        label.setWordWrap(True)
 
        # setting configuration options
        pg.setConfigOptions(antialias=True)
 
        # creating image view  object
        imv = ImageView()
 
        # Create random 3D data set with noisy signals
        img = pg.gaussianFilter(np.random.normal(
            size=(200, 200)), (5, 5)) * 20 + 100
 
        # setting new axis to image
        img = img[np.newaxis, :, :]
 
        # decay data
        decay = np.exp(-np.linspace(0, 0.3, 100))[:, np.newaxis, np.newaxis]
 
        # random data
        data = np.random.normal(size=(100, 200, 200))
        data += img * decay
        data += 2
 
        # adding time-varying signal
        sig = np.zeros(data.shape[0])
        sig[30:] += np.exp(-np.linspace(1, 10, 70))
        sig[40:] += np.exp(-np.linspace(1, 10, 60))
        sig[70:] += np.exp(-np.linspace(1, 10, 30))
 
        sig = sig[:, np.newaxis, np.newaxis] * 3
        data[:, 50:60, 30:40] += sig
 
        # setting image to image view
        # Displaying the data and assign each frame a time value from 1.0 to 3.0
        imv.setImage(data, xvals=np.linspace(1., 3., data.shape[0]))
 
        # Set a custom color map
        colors = [
            (0, 0, 0),
            (4, 5, 61),
            (84, 42, 55),
            (15, 87, 60),
            (208, 17, 141),
            (255, 255, 255)
        ]
 
        # color map
        cmap = pg.ColorMap(pos=np.linspace(0.0, 1.0, 6), color=colors)
 
        # setting color map to the image view
        imv.setColorMap(cmap)
 
        # Creating a grid layout
        layout = QGridLayout()
 
        # minimum width value of the label
        label.setFixedWidth(130)
 
        # setting this layout to the widget
        widget.setLayout(layout)
 
        # adding label in the layout
        layout.addWidget(label, 1, 0)
 
        # plot window goes on right side, spanning 3 rows
        layout.addWidget(imv, 0, 1, 3, 1)
 
        # setting this widget as central widget of the main window
        self.setCentralWidget(widget)
 
        # QRect object
        rect = QRect(100, 10, 300, 300)
 
        # creating a QRegion
        region = QRegion(rect)
 
        # setting mask to the image view
        imv.setMask(region)
 
 
         
# create pyqt5 app
App = QApplication(sys.argv)
 
# create the instance of our Window
window = Window()
 
# start the app
sys.exit(App.exec())

Producción : 
 

Publicación traducida automáticamente

Artículo escrito por rakshitarora y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *