PyQtGraph: rango automático de vista de imagen

En este artículo, veremos cómo podemos configurar un rango automático de visualización de imágenes en PyQTGaph. PyQtGraph es una biblioteca de interfaz de usuario y gráficos para Python que proporciona la funcionalidad comúnmente requerida en el diseño y las aplicaciones científicas. Sus objetivos principales son proporcionar gráficos rápidos e interactivos para mostrar datos (gráficos, videos, etc.). Widget utilizado para mostrar y analizar datos de imágenes. Implementa muchas funciones, como mostrar datos de imágenes en 2D y 3D. Para datos 3D, se muestra un control deslizante del eje z que permite al usuario seleccionar qué cuadro se muestra. Muestra el histograma de los datos de la imagen con una región móvil que define los niveles oscuros/claros, el degradado editable proporciona una tabla de búsqueda de colores, el control deslizante del marco también se puede mover usando las teclas de flecha izquierda/derecha, así como pgpgn, pgn, home y end. Autoescalar y desplazar la vista alrededor de la imagen de modo que la imagen llene la vista.
Podemos crear una vista de imagen con la ayuda del comando que se indica a continuación. 
 

# creating a pyqtgraph image view object
imv = pg.ImageView()

Para hacer esto, usamos el método autoRange() con el objeto de vista de imagen

Sintaxis : imv.autoRange()
Argumento : No toma ningún argumento
Retorno : Devuelve Ninguno 

A continuación se muestra la implementación. 

Python3

# importing Qt widgets
from PyQt5.QtWidgets import *
 
# importing system
import sys
 
# importing numpy as np
import numpy as np
 
# importing pyqtgraph as pg
import pyqtgraph as pg
from PyQt5.QtGui import *
from PyQt5.QtCore import *
 
from collections import namedtuple
 
class Window(QMainWindow):
 
    def __init__(self):
        super().__init__()
 
        # setting title
        self.setWindowTitle("PyQtGraph")
 
        # setting geometry
        self.setGeometry(100, 100, 600, 500)
 
        # icon
        icon = QIcon("skin.png")
 
        # setting icon to the window
        self.setWindowIcon(icon)
 
        # calling method
        self.UiComponents()
 
        # showing all the widgets
        self.show()
 
    # method for components
    def UiComponents(self):
 
        # creating a widget object
        widget = QWidget()
 
        # creating a label
        label = QLabel("Geeksforgeeks Image View")
 
        # setting minimum width
        label.setMinimumWidth(130)
 
        # making label do word wrap
        label.setWordWrap(True)
 
        # setting configuration options
        pg.setConfigOptions(antialias = True)
 
        # creating image view  object
        imv = pg.ImageView()
 
        # Create random 3D data set with noisy signals
        img = pg.gaussianFilter(np.random.normal(size = (200, 200)),
                                (5, 5)) * 20 + 100
 
        # setting new axis to image
        img = img[np.newaxis, :, :]
 
        # decay data
        decay = np.exp(-np.linspace(0, 0.3, 100))[:, np.newaxis, np.newaxis]
 
        # random data
        data = np.random.normal(size = (100, 200, 200))
        data += img * decay
        data += 2
 
        # adding time-varying signal
        sig = np.zeros(data.shape[0])
        sig[30:] += np.exp(-np.linspace(1, 10, 70))
        sig[40:] += np.exp(-np.linspace(1, 10, 60))
        sig[70:] += np.exp(-np.linspace(1, 10, 30))
 
        sig = sig[:, np.newaxis, np.newaxis] * 3
        data[:, 50:60, 30:40] += sig
 
        # Displaying the data and assign each frame a time value from 1.0 to 3.0
        imv.setImage(data, xvals=np.linspace(1., 3., data.shape[0]))
 
        # Set a custom color map
        colors = [
            (0, 0, 0),
            (45, 5, 61),
            (84, 42, 55),
            (150, 87, 60),
            (208, 171, 141),
            (255, 255, 255)
        ]
 
        # color map
        cmap = pg.ColorMap(pos=np.linspace(0.0, 1.0, 6), color=colors)
 
        # setting color map to the image view
        imv.setColorMap(cmap)
 
        # Creating a grid layout
        layout = QGridLayout()
 
        # minimum width value of the label
        label.setFixedWidth(130)
 
        # setting this layout to the widget
        widget.setLayout(layout)
 
        # adding label in the layout
        layout.addWidget(label, 1, 0)
 
        # plot window goes on right side, spanning 3 rows
        layout.addWidget(imv, 0, 1, 3, 1)
 
        # setting this widget as central widget of the main window
        self.setCentralWidget(widget)
 
        # setting automatic range of image view
        imv.autoRange()
 
# create pyqt5 app
App = QApplication(sys.argv)
 
# create the instance of our Window
window = Window()
 
# start the app
sys.exit(App.exec())

Producción : 

Publicación traducida automáticamente

Artículo escrito por rakshitarora y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *