Python: distribución máxima de Weibull en estadísticas

scipy.stats.weibull_max() es una variable aleatoria continua máxima de Weibull. Se hereda de los métodos genéricos como una instancia de la clase rv_continuous . Completa los métodos con detalles específicos para esta distribución en particular.

Parámetros:

q : probabilidad de cola inferior y superior
x : cuantiles
loc : parámetro de ubicación [opcional]. Predeterminado = 0
escala: [opcional] parámetro de escala. Predeterminado = 1
tamaño: [tupla de enteros, opcional] forma o variantes aleatorias.
momentos: [opcional] compuesto por letras [‘mvsk’]; ‘m’ = media, ‘v’ = varianza, ‘s’ = sesgo de Fisher y ‘k’ = curtosis de Fisher. (predeterminado = ‘MV’).

Resultados: variable aleatoria continua máxima de Weibull

Código n.º 1: creación de la variable aleatoria continua máxima de Weibull

# importing library
  
from scipy.stats import weibull_max 
    
numargs = weibull_max .numargs 
a, b = 0.2, 0.8
rv = weibull_max (a, b) 
    
print ("RV : \n", rv)  

Producción :

RV : 
 scipy.stats._distn_infrastructure.rv_frozen object at 0x000002A9DA07FDC8

Código n.º 2: variable continua máxima de Weibull y distribución de probabilidad

import numpy as np 
quantile = np.arange (0.01, 1, 0.1) 
  
# Random Variates 
R = weibull_max .rvs(a, b, size = 10) 
print ("Random Variates : \n", R) 
  
# PDF 
x = np.linspace(weibull_max.ppf(0.01, a, b),
                weibull_max.ppf(0.99, a, b), 10)
R = weibull_max.pdf(x, 1, 3)
print ("\nProbability Distribution : \n", R) 

Producción :

Random Variates : 
 [ 7.99998841e-01  7.96362853e-01 -1.36808367e+00 -5.04876338e-01
 -8.07612996e+03  2.47694796e-01  7.80624490e-01  7.99996977e-01
  7.95962734e-01  6.94775447e-01]

Probability Distribution : 
 [0.00000000e+000 0.00000000e+000 0.00000000e+000 0.00000000e+000
 0.00000000e+000 0.00000000e+000 1.59673931e-301 1.41364401e-201
 1.25154393e-101 1.10803158e-001]

Código #3: Representación gráfica.

import numpy as np 
import matplotlib.pyplot as plt 
     
distribution = np.linspace(0, np.minimum(rv.dist.b, 2)) 
print("Distribution : \n", distribution) 

Producción :

Distribution : 
 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0.]
  

Código #4: Argumentos Posicionales Variantes

import matplotlib.pyplot as plt 
import numpy as np 
  
x = np.linspace(0, 5, 100) 
     
# Varying positional arguments 
y1 = weibull_max.pdf(x, a, b) 
y2 = weibull_max.pdf(x, a, b) 
plt.plot(x, y1, "*", x, y2, "r--") 

Producción :

Publicación traducida automáticamente

Artículo escrito por mathemagic y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *