TensorFlow es una biblioteca de Python de código abierto diseñada por Google para desarrollar modelos de aprendizaje automático y redes neuronales de aprendizaje profundo. argmin() es un método presente en el módulo matemático de tensorflow. Este método se utiliza para encontrar el valor mínimo en los ejes.
Syntax: tensorflow.math.argmin( input,axes,output_type,name ) Arguments: 1. input: It is a tensor. Allowed dtypes for this tensor are float32, float64, int32, uint8, int16, int8, complex64, int64, qint8, quint8, qint32, bfloat16, uint16, complex128, half, uint32, uint64. 2. axes: It is also a vector. It describes the axes to reduce the tensor. Allowed dtype are int32 and int64. Also [-rank(input),rank(input)) is the range allowed. axes=0 is used for vector. 3. output_type: It defines the dtype in which returned result should be. Allowed values are int32, int64 and the default value is int64. 4. name: It is an optional argument which defines name for the operation. Return: A tensor of output_type which contains the indices of the minimum value along the axes.
Ejemplo 1:
Python3
# importing the library import tensorflow as tf # initializing the constant tensor a = tf.constant([5,10,5.6,7.9,1,50]) # 1 is the minimum value at index 4 # getting the minimum value index tensor b = tf.math.argmin(input = a) # printing the tensor print('tensor: ',b) # Evaluating the value of tensor c = tf.keras.backend.eval(b) #printing the value print('value: ',c)
Producción:
tensor: tf.Tensor(4, shape=(), dtype=int64) value: 4
Ejemplo 2:
Este ejemplo usa un tensor de forma (3,3).
Python3
# importing the library import tensorflow as tf # initializing the constant tensor a = tf.constant(value = [9,8,7,3,5,4,6,2,1],shape = (3,3)) # printing the initialized tensor print(a) # getting the minimum value indices tensor b = tf.math.argmin(input = a) # printing the tensor print('Indices Tensor: ',b) # Evaluating the tensor value c = tf.keras.backend.eval(b) # printing the value print('Indices: ',c)
Producción:
tf.Tensor( [[9 8 7] [3 5 4] [6 2 1]], shape=(3, 3), dtype=int32) Indices tensor: tf.Tensor([1 2 2], shape=(3,), dtype=int64) Indices: [1 2 2]
Publicación traducida automáticamente
Artículo escrito por aman neekhara y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA