TensorFlow es una biblioteca de Python de código abierto diseñada por Google para desarrollar modelos de aprendizaje automático y redes neuronales de aprendizaje profundo. TensorFlow raw_ops proporciona acceso de bajo nivel a todas las operaciones de TensorFlow. Exp() se usa para encontrar elementos exponenciales de x.
For complex numbers e^(x+iy) = e^x * e^iy = e^x * (cos y + i sin y)
Sintaxis: tf.raw_ops.Exp(x, nombre)
Parámetros:
- x: Es el tensor de entrada. Los tipos permitidos para este tensor son bfloat16, half, float32, float64, complex64, complex128.
- name(opcional): Define el nombre de la operación.
Devoluciones: Devuelve un tensor del mismo tipo que x.
Nota: Solo toma argumentos de palabras clave.
Ejemplo 1:
Python3
# Importing the library import tensorflow as tf # Initializing the input tensor a = tf.constant([1, 2, 3, 4, 5], dtype = tf.float64) # Printing the input tensor print('Input: ', a) # Calculating exponential res = tf.raw_ops.Exp(x = a) # Printing the result print('Result: ', res)
Producción:
Input: tf.Tensor([1. 2. 3. 4. 5.], shape=(5, ), dtype=float64) Result: tf.Tensor([ 2.71828183 7.3890561 20.08553692 54.59815003 148.4131591 ], shape=(5, ), dtype=float64)
Ejemplo 2: Visualización
Python3
# importing the library import tensorflow as tf import matplotlib.pyplot as plt # Initializing the input tensor a = tf.constant([1, 2, 3, 4, 5], dtype = tf.float64) # Calculating exponential res = tf.raw_ops.Exp(x = a) # Plotting the graph plt.plot(a, res, color ='green') plt.title('tensorflow.raw_ops.Exp') plt.xlabel('Input') plt.ylabel('Result') plt.show()
Producción:
Publicación traducida automáticamente
Artículo escrito por aman neekhara y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA