En el algoritmo QuickSort simple , seleccionamos un elemento como pivote, dividimos la array alrededor de un pivote y recurrimos a los subarreglos a la izquierda y derecha del pivote.
Considere una array que tiene muchos elementos redundantes. Por ejemplo, {1, 4, 2, 4, 2, 4, 1, 2, 4, 1, 2, 2, 2, 2, 4, 1, 4, 4, 4}. Si se elige 4 como pivote en la Ordenación rápida simple, arreglamos solo un 4 y procesamos recursivamente las ocurrencias restantes.
La idea de la clasificación rápida de 3 vías es procesar todas las ocurrencias del pivote y se basa en el algoritmo de la bandera nacional holandesa.
In 3 Way QuickSort, an array arr[l..r] is divided in 3 parts: a) arr[l..i] elements less than pivot. b) arr[i+1..j-1] elements equal to pivot. c) arr[j..r] elements greater than pivot.
A continuación se muestra la implementación del algoritmo anterior.
C++
// C++ program for 3-way quick sort #include <bits/stdc++.h> using namespace std; /* This function partitions a[] in three parts a) a[l..i] contains all elements smaller than pivot b) a[i+1..j-1] contains all occurrences of pivot c) a[j..r] contains all elements greater than pivot */ void partition(int a[], int l, int r, int& i, int& j) { i = l - 1, j = r; int p = l - 1, q = r; int v = a[r]; while (true) { // From left, find the first element greater than // or equal to v. This loop will definitely // terminate as v is last element while (a[++i] < v) ; // From right, find the first element smaller than // or equal to v while (v < a[--j]) if (j == l) break; // If i and j cross, then we are done if (i >= j) break; // Swap, so that smaller goes on left greater goes // on right swap(a[i], a[j]); // Move all same left occurrence of pivot to // beginning of array and keep count using p if (a[i] == v) { p++; swap(a[p], a[i]); } // Move all same right occurrence of pivot to end of // array and keep count using q if (a[j] == v) { q--; swap(a[j], a[q]); } } // Move pivot element to its correct index swap(a[i], a[r]); // Move all left same occurrences from beginning // to adjacent to arr[i] j = i - 1; for (int k = l; k < p; k++, j--) swap(a[k], a[j]); // Move all right same occurrences from end // to adjacent to arr[i] i = i + 1; for (int k = r - 1; k > q; k--, i++) swap(a[i], a[k]); } // 3-way partition based quick sort void quicksort(int a[], int l, int r) { if (r <= l) return; int i, j; // Note that i and j are passed as reference partition(a, l, r, i, j); // Recur quicksort(a, l, j); quicksort(a, i, r); } // A utility function to print an array void printarr(int a[], int n) { for (int i = 0; i < n; ++i) printf("%d ", a[i]); printf("\n"); } // Driver code int main() { int a[] = { 4, 9, 4, 4, 1, 9, 4, 4, 9, 4, 4, 1, 4 }; int size = sizeof(a) / sizeof(int); // Function Call printarr(a, size); quicksort(a, 0, size - 1); printarr(a, size); return 0; }
Java
// Java program for 3-way quick sort import java.util.*; class GFG { static int i, j; /* This function partitions a[] in three parts a) a[l..i] contains all elements smaller than pivot b) a[i+1..j-1] contains all occurrences of pivot c) a[j..r] contains all elements greater than pivot */ static void partition(int a[], int l, int r) { i = l - 1; j = r; int p = l - 1, q = r; int v = a[r]; while (true) { // From left, find the first element greater than // or equal to v. This loop will definitely // terminate as v is last element while (a[++i] < v) ; // From right, find the first element smaller than // or equal to v while (v < a[--j]) if (j == l) break; // If i and j cross, then we are done if (i >= j) break; // Swap, so that smaller goes on left greater goes // on right int temp = a[i]; a[i] = a[j]; a[j] = temp; // Move all same left occurrence of pivot to // beginning of array and keep count using p if (a[i] == v) { p++; temp = a[i]; a[i] = a[p]; a[p] = temp; } // Move all same right occurrence of pivot to end of // array and keep count using q if (a[j] == v) { q--; temp = a[q]; a[q] = a[j]; a[j] = temp; } } // Move pivot element to its correct index int temp = a[i]; a[i] = a[r]; a[r] = temp; // Move all left same occurrences from beginning // to adjacent to arr[i] j = i - 1; for (int k = l; k < p; k++, j--) { temp = a[k]; a[k] = a[j]; a[j] = temp; } // Move all right same occurrences from end // to adjacent to arr[i] i = i + 1; for (int k = r - 1; k > q; k--, i++) { temp = a[i]; a[i] = a[k]; a[k] = temp; } } // 3-way partition based quick sort static void quicksort(int a[], int l, int r) { if (r <= l) return; i = 0; j = 0; // Note that i and j are passed as reference partition(a, l, r); // Recur quicksort(a, l, j); quicksort(a, i, r); } // A utility function to print an array static void printarr(int a[], int n) { for (int i = 0; i < n; ++i) System.out.printf("%d ", a[i]); System.out.printf("\n"); } // Driver code public static void main(String[] args) { int a[] = { 4, 9, 4, 4, 1, 9, 4, 4, 9, 4, 4, 1, 4 }; int size = a.length; // Function Call printarr(a, size); quicksort(a, 0, size - 1); printarr(a, size); } } // This code is contributed by Rajput-Ji
Python3
''' This function partitions a[] in three parts a) a[first..start] contains all elements smaller than pivot b) a[start+1..mid-1] contains all occurrences of pivot c) a[mid..last] contains all elements greater than pivot ''' def partition(arr, first, last, start, mid): pivot = arr[last] end = last # Iterate while mid is not greater than end. while (mid[0] <= end): # Inter Change position of element at the starting if it's value is less than pivot. if (arr[mid[0]] < pivot): arr[mid[0]], arr[start[0]] = arr[start[0]], arr[mid[0]] mid[0] = mid[0] + 1 start[0] = start[0] + 1 # Inter Change position of element at the end if it's value is greater than pivot. elif (arr[mid[0]] > pivot): arr[mid[0]], arr[end] = arr[end], arr[mid[0]] end = end - 1 else: mid[0] = mid[0] + 1 # Function to sort the array elements in 3 cases def quicksort(arr,first,last): # First case when an array contain only 1 element if (first >= last): return # Second case when an array contain only 2 elements if (last == first + 1): if (arr[first] > arr[last]): arr[first], arr[last] = arr[last], arr[first] return # Third case when an array contain more than 2 elements start = [first] mid = [first] # Function to partition the array. partition(arr, first, last, start, mid) # Recursively sort sublist containing elements that are less than the pivot. quicksort(arr, first, start[0] - 1) # Recursively sort sublist containing elements that are more than the pivot quicksort(arr, mid[0], last) # Code Start from here arr = [4,9,4,4,1,9,4,4,9,4,4,1,4] # Call the quicksort function. quicksort(arr,0,len(arr) - 1) # print arr after sorting the elements print(arr)
C#
// C# program for 3-way quick sort using System; class GFG { // A function which is used to swap values static void swap<T>(ref T lhs, ref T rhs) { T temp; temp = lhs; lhs = rhs; rhs = temp; } /* This function partitions a[] in three parts a) a[l..i] contains all elements smaller than pivot b) a[i+1..j-1] contains all occurrences of pivot c) a[j..r] contains all elements greater than pivot */ public static void partition(int[] a, int l, int r, ref int i, ref int j) { i = l - 1; j = r; int p = l - 1, q = r; int v = a[r]; while (true) { // From left, find the first element greater // than or equal to v. This loop will definitely // terminate as v is last element while (a[++i] < v) ; // From right, find the first element smaller // than or equal to v while (v < a[--j]) if (j == l) break; // If i and j cross, then we are done if (i >= j) break; // Swap, so that smaller goes on left greater // goes on right swap(ref a[i], ref a[j]); // Move all same left occurrence of pivot to // beginning of array and keep count using p if (a[i] == v) { p++; swap(ref a[p], ref a[i]); } // Move all same right occurrence of pivot to // end of array and keep count using q if (a[j] == v) { q--; swap(ref a[j], ref a[q]); } } // Move pivot element to its correct index swap(ref a[i], ref a[r]); // Move all left same occurrences from beginning // to adjacent to arr[i] j = i - 1; for (int k = l; k < p; k++, j--) swap(ref a[k], ref a[j]); // Move all right same occurrences from end // to adjacent to arr[i] i = i + 1; for (int k = r - 1; k > q; k--, i++) swap(ref a[i], ref a[k]); } // 3-way partition based quick sort public static void quicksort(int[] a, int l, int r) { if (r <= l) return; int i = 0, j = 0; // Note that i and j are passed as reference partition(a, l, r, ref i, ref j); // Recur quicksort(a, l, j); quicksort(a, i, r); } // A utility function to print an array public static void printarr(int[] a, int n) { for (int i = 0; i < n; ++i) Console.Write(a[i] + " "); Console.Write("\n"); } // Driver code static void Main() { int[] a = { 4, 9, 4, 4, 1, 9, 4, 4, 9, 4, 4, 1, 4 }; int size = a.Length; // Function Call printarr(a, size); quicksort(a, 0, size - 1); printarr(a, size); } // This code is contributed by DrRoot_ }
Javascript
<script> // javascript program for 3-way quick sort var i, j; /* * This function partitions a in three parts a) a[l..i] contains all elements * smaller than pivot b) a[i+1..j-1] contains all occurrences of pivot c) * a[j..r] contains all elements greater than pivot */ function partition(a , l , r) { i = l - 1; j = r; var p = l - 1, q = r; var v = a[r]; while (true) { // From left, find the first element greater than // or equal to v. This loop will definitely // terminate as v is last element while (a[++i] < v) ; // From right, find the first element smaller than // or equal to v while (v < a[--j]) if (j == l) break; // If i and j cross, then we are done if (i >= j) break; // Swap, so that smaller goes on left greater goes // on right var temp = a[i]; a[i] = a[j]; a[j] = temp; // Move all same left occurrence of pivot to // beginning of array and keep count using p if (a[i] == v) { p++; temp = a[i]; a[i] = a[p]; a[p] = temp; } // Move all same right occurrence of pivot to end of // array and keep count using q if (a[j] == v) { q--; temp = a[q]; a[q] = a[j]; a[j] = temp; } } // Move pivot element to its correct index var temp = a[i]; a[i] = a[r]; a[r] = temp; // Move all left same occurrences from beginning // to adjacent to arr[i] j = i - 1; for (k = l; k < p; k++, j--) { temp = a[k]; a[k] = a[j]; a[j] = temp; } // Move all right same occurrences from end // to adjacent to arr[i] i = i + 1; for (k = r - 1; k > q; k--, i++) { temp = a[i]; a[i] = a[k]; a[k] = temp; } } // 3-way partition based quick sort function quicksort(a , l , r) { if (r <= l) return; i = 0; j = 0; // Note that i and j are passed as reference partition(a, l, r); // Recur quicksort(a, l, j); quicksort(a, i, r); } // A utility function to print an array function printarr(a , n) { for (i = 0; i < n; ++i) document.write(" "+ a[i]); document.write("<br/>"); } // Driver code var a = [ 4, 9, 4, 4, 1, 9, 4, 4, 9, 4, 4, 1, 4 ]; var size = a.length; // Function Call printarr(a, size); quicksort(a, 0, size - 1); printarr(a, size); // This code contributed by aashish1995 </script>
4 9 4 4 1 9 4 4 9 4 4 1 4 1 1 4 4 4 4 4 4 4 4 9 9 9
Complejidad del tiempo : O(N * log(N))
Donde ‘N’ es el número de elementos en la array/lista dada
El número promedio de llamadas recursivas realizadas a la función de clasificación rápida es log N, y cada vez que se llama a la función, estamos atravesando la array/lista dada que requiere tiempo O (N). Por tanto, la complejidad temporal total es O(N * log (N)).
Complejidad espacial: O (log N)
donde ‘N’ es el número de elementos en la array/lista dada.
Gracias a Utkarsh por sugerir la implementación anterior.
Otra implementación utilizando el algoritmo de la bandera nacional holandesa
C++
// C++ program for 3-way quick sort #include <bits/stdc++.h> using namespace std; void swap(int* a, int* b) { int temp = *a; *a = *b; *b = temp; } // A utility function to print an array void printarr(int a[], int n) { for (int i = 0; i < n; ++i) printf("%d ", a[i]); printf("\n"); } /* This function partitions a[] in three parts a) a[l..i] contains all elements smaller than pivot b) a[i+1..j-1] contains all occurrences of pivot c) a[j..r] contains all elements greater than pivot */ // It uses Dutch National Flag Algorithm void partition(int a[], int low, int high, int& i, int& j) { // To handle 2 elements if (high - low <= 1) { if (a[high] < a[low]) swap(&a[high], &a[low]); i = low; j = high; return; } int mid = low; int pivot = a[high]; while (mid <= high) { if (a[mid] < pivot) swap(&a[low++], &a[mid++]); else if (a[mid] == pivot) mid++; else if (a[mid] > pivot) swap(&a[mid], &a[high--]); } // update i and j i = low - 1; j = mid; // or high+1 } // 3-way partition based quick sort void quicksort(int a[], int low, int high) { if (low >= high) // 1 or 0 elements return; int i, j; // Note that i and j are passed as reference partition(a, low, high, i, j); // Recur two halves quicksort(a, low, i); quicksort(a, j, high); } // Driver Code int main() { int a[] = { 4, 9, 4, 4, 1, 9, 4, 4, 9, 4, 4, 1, 4 }; // int a[] = {4, 39, 54, 14, 31, 89, 44, 34, 59, 64, 64, // 11, 41}; int a[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; // int a[] = {91, 82, 73, 64, 55, 46, 37, 28, 19, 10}; // int a[] = {4, 9, 4, 4, 9, 1, 1, 1}; int size = sizeof(a) / sizeof(int); // Function Call printarr(a, size); quicksort(a, 0, size - 1); printarr(a, size); return 0; }
Java
// Java program for 3-way quick sort import java.util.*; class GFG { static void swap(int[] arr, int i, int j) { int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } // A utility function to print an array static void printarr(int a[], int n) { for (int i = 0; i < n; ++i) System.out.printf("%d ", a[i]); System.out.printf("\n"); } /* This function partitions a[] in three parts a) a[l..i] contains all elements smaller than pivot b) a[i+1..j-1] contains all occurrences of pivot c) a[j..r] contains all elements greater than pivot */ // It uses Dutch National Flag Algorithm static void partition(int a[], int low, int high, int i, int j) { // To handle 2 elements if (high - low <= 1) { if (a[high] < a[low]) swap(a, high, low); i = low; j = high; return; } int mid = low; int pivot = a[high]; while (mid <= high) { if (a[mid] < pivot) swap(a, low++, mid++); else if (a[mid] == pivot) mid++; else if (a[mid] > pivot) swap(a, mid, high--); } // update i and j i = low - 1; j = mid; // or high+1 } // 3-way partition based quick sort static void quicksort(int a[], int low, int high) { if (low >= high) // 1 or 0 elements return; int i=low, j=high; // Note that i and j are passed partition(a, low, high, i, j); // Recur two halves quicksort(a, low, i); quicksort(a, j, high); } // Driver Code public static void main(String[] args) { int a[] = { 4, 9, 4, 4, 1, 9, 4, 4, 9, 4, 4, 1, 4 }; // int a[] = {4, 39, 54, 14, 31, 89, 44, 34, 59, 64, 64, // 11, 41}; int a[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; // int a[] = {91, 82, 73, 64, 55, 46, 37, 28, 19, 10}; // int a[] = {4, 9, 4, 4, 9, 1, 1, 1}; int size = a.length; // Function Call printarr(a, size); quicksort(a, 0, size - 1); printarr(a, size); } } // This code is contributed by Pushpesh Raj.
Python3
# python3 program for 3-way quick sort # Function to find lexicographically minimum def swap(a,i,j) : temp = a[i] a[i] = a[j] a[j] = temp # A utility function to print an array def printarr(a, n) : for i in range (n) : print(a[i],end=' ') print("\n") ''' This function partitions a[] in three parts a) a[l..i] contains all elements smaller than pivot b) a[i+1..j-1] contains all occurrences of pivot c) a[j..r] contains all elements greater than pivot ''' # It uses Dutch National Flag Algorithm def partition(a, low, high, i, j) : # To handle 2 elements if high - low <= 1 : if a[high] < a[low] : swap(a,high, low) i = low j = high return mid = low; pivot = a[high]; while mid <= high : if a[mid] < pivot : swap(a,low,mid) low+=1 mid+=1 elif a[mid] == pivot : mid+=1 elif a[mid] > pivot : swap(a,mid,high) high-=1 # update i and j i = low - 1 j = mid # or high+1 # 3-way partition based quick sort def quickSort(a,low,high) : if low >= high : # 1 or 0 elements return i = low; j = high; # Note that i and j are passed as reference partition(a,low,high,i,j) # Recur two halves quickSort(a,low,i) quickSort(a,j,high) # Driver code if __name__ == "__main__" : a = [4, 9, 4, 4, 1, 9, 4, 4, 9, 4, 4, 1, 4] size = len(a) printarr(a,size) quickSort(a,0,size-1) printarr(a,size) #this code is contributed by aditya942003patil
C#
// C# program for 3-way quick sort using System; class GFG { // A function which is used to swap values static void swap<T>(ref T lhs, ref T rhs) { T temp; temp = lhs; lhs = rhs; rhs = temp; } // A utility function to print an array public static void printarr(int[] a, int n) { for (int i = 0; i < n; ++i) Console.Write(a[i] + " "); Console.Write("\n"); } /* This function partitions a[] in three parts a) a[l..i] contains all elements smaller than pivot b) a[i+1..j-1] contains all occurrences of pivot c) a[j..r] contains all elements greater than pivot */ // It uses Dutch National Flag Algorithm public static void partition(int[] a, int low, int high, ref int i, ref int j) { // To handle 2 elements if (high - low <= 1) { if (a[high] < a[low]) swap(ref a[high], ref a[low]); i = low; j = high; return; } int mid = low; int pivot = a[high]; while (mid <= high) { if (a[mid] < pivot) swap(ref a[low++], ref a[mid++]); else if (a[mid] == pivot) mid++; else if (a[mid] > pivot) swap(ref a[mid], ref a[high--]); } // update i and j i = low - 1; j = mid; // or high+1 } // 3-way partition based quick sort public static void quicksort(int[] a, int low, int high) { if (low >= high) // 1 or 0 elements return; int i = 0, j = 0; // Note that i and j are passed as reference partition(a, low, high, ref i, ref j); // Recur two halves quicksort(a, low, i); quicksort(a, j, high); } // Driver code static void Main() { int[] a = { 4, 9, 4, 4, 1, 9, 4, 4, 9, 4, 4, 1, 4 }; // int[] a = {4, 39, 54, 14, 31, 89, 44, 34, 59, 64, // 64, 11, 41}; int[] a = {1, 2, 3, 4, 5, 6, 7, 8, 9, // 10}; int[] a = {91, 82, 73, 64, 55, 46, 37, 28, // 19, 10}; int[] a = {4, 9, 4, 4, 9, 1, 1, 1}; int size = a.Length; // Function Call printarr(a, size); quicksort(a, 0, size - 1); printarr(a, size); } // This code is contributed by DrRoot_ }
Javascript
<script> // Javascript program for 3-way quick sort function swap(arr, i, j) { let temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } // A utility function to print an array function printarr(a, n) { for (let i = 0; i < n; ++i) document.write(a[i]); document.write("<br>"); } /* This function partitions a[] in three parts a) a[l..i] contains all elements smaller than pivot b) a[i+1..j-1] contains all occurrences of pivot c) a[j..r] contains all elements greater than pivot */ // It uses Dutch National Flag Algorithm function partition(a, low, high, i, j) { // To handle 2 elements if (high - low <= 1) { if (a[high] < a[low]) swap(a, high, low); i = low; j = high; return; } let mid = low; let pivot = a[high]; while (mid <= high) { if (a[mid] < pivot) swap(a, low++, mid++); else if (a[mid] == pivot) mid++; else if (a[mid] > pivot) swap(a, mid, high--); } // update i and j i = low - 1; j = mid; // or high+1 } // 3-way partition based quick sort function quicksort(a, low, high) { if (low >= high) // 1 or 0 elements return; let i = low, j = high; // Note that i and j are passed partition(a, low, high, i, j); // Recur two halves quicksort(a, low, i); quicksort(a, j, high); } // Driver Code let a = [4, 9, 4, 4, 1, 9, 4, 4, 9, 4, 4, 1, 4]; // let a[] = {4, 39, 54, 14, 31, 89, 44, 34, 59, 64, 64, // 11, 41}; let a[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; // let a[] = {91, 82, 73, 64, 55, 46, 37, 28, 19, 10}; // let a[] = {4, 9, 4, 4, 9, 1, 1, 1}; let size = a.length; // Function Call printarr(a, size); quicksort(a, 0, size - 1); printarr(a, size); // This code is contributed by gfgking </script>
4 9 4 4 1 9 4 4 9 4 4 1 4 1 1 4 4 4 4 4 4 4 4 9 9 9
Gracias Aditya Goel por esta implementación.
Referencia:
http://algs4.cs.princeton.edu/lectures/23DemoPartitioning.pdf
http://www.sorting-algorithms.com/quick-sort-3-way
Escriba comentarios si encuentra algo incorrecto o si desea para compartir más información sobre el tema tratado anteriormente.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA