Dado el orden de la array N y M, y una ubicación de origen ( X, Y ), la tarea es encontrar todas las coordenadas de la array en orden cuando se visita en el sentido de las agujas del reloj (es decir, Este-> Sur-> Oeste- > Norte) Siempre que te muevas fuera de la array, continúa el camino fuera de ella para volver a la array más tarde.
Ejemplos:
Entrada: N = 1, M = 4, X = 0, Y = 0
Salida: {{0, 0}, {0, 1}, {0, 2}, {0, 3}}
Explicación:Entrada: N = 5, M = 6, X = 1, Y = 4
Salida: {{1, 4}, {1, 5}, {2, 5}, {2, 4}, {2, 3}, {1, 3}, {0, 3}, {0, 4}, {0, 5}, {3, 5}, {3, 4}, {3, 3}, {3, 2}, {2 , 2}, {1, 2}, {0, 2}, {4, 5}, {4, 4}, {4, 3}, {4, 2}, {4, 1}, {3, 1 }, {2, 1}, {1, 1}, {0, 1}, {4, 0}, {3, 0}, {2, 0}, {1, 0}, {0, 0}}
Explicación:
Enfoque: El problema dado se puede resolver atravesando la array desde la posición (X, Y) en dirección espiral en el sentido de las agujas del reloj , y cada vez que llegue fuera de la array , no incluya las coordenadas en la solución, sino que continúe atravesando el exterior para llegar de nuevo al interior la array. Continúe este proceso hasta que todas las celdas de la array no estén incluidas en la solución o el resultado.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to turn one unit left void turn_left(int& r, int& c) { c -= 1; } // Function to turn one unit right void turn_right(int& r, int& c) { c += 1; } // Function to turn one unit up void turn_up(int& r, int& c) { r -= 1; } // Function to turn one unit down void turn_down(int& r, int& c) { r += 1; } // For checking whether a cell lies // outside the matrix or not bool is_outside(int row, int col, int r, int c) { if (r >= row || c >= col || r < 0 || c < 0) return true; return false; } // Function to rotate in clockwise manner void next_turn(char& previous_direction, int& r, int& c) { if (previous_direction == 'u') { turn_right(r, c); previous_direction = 'r'; } else if (previous_direction == 'r') { turn_down(r, c); previous_direction = 'd'; } else if (previous_direction == 'd') { turn_left(r, c); previous_direction = 'l'; } else if (previous_direction == 'l') { turn_up(r, c); previous_direction = 'u'; } } // Function to move in the same direction // as its prev_direction void move_in_same_direction( char previous_direction, int& r, int& c) { if (previous_direction == 'r') c++; else if (previous_direction == 'u') r--; else if (previous_direction == 'd') r++; else if (previous_direction == 'l') c--; } // Function to find the spiral order of // of matrix according to given rules vector<vector<int> > spiralMatrixIII( int rows, int cols, int r, int c) { // For storing the co-ordinates vector<vector<int> > res; char previous_direction = 'r'; // For keeping track of no of steps // to go without turn int turning_elements = 2; // Count is for counting total cells // put in the res int count = 0; // Current_count is for keeping track // of how many cells need to // traversed in the same direction int current_count = 0; // For keeping track the number // of turns we have made int turn_count = 0; int limit = rows * cols; while (count < limit) { // If the current cell is within // the board if (!is_outside(rows, cols, r, c)) { res.push_back({ r, c }); count++; } current_count++; // After visiting turning elements // of cells we change our turn if (current_count == turning_elements) { // Changing our direction // we have to increase the // turn count turn_count++; // In Every 2nd turn increasing // the elements the turn visiting if (turn_count == 2) turning_elements++; // After every 3rd turn reset // the turn_count to 1 else if (turn_count == 3) { turn_count = 1; } // Changing direction to next // direction based on the // previous direction next_turn(previous_direction, r, c); // Reset the current_count current_count = 1; } else { move_in_same_direction( previous_direction, r, c); } } // Return the traversal return res; } // Driver Code int main() { int N = 5, M = 6, X = 1, Y = 4; auto res = spiralMatrixIII(N, M, X, Y); // Display answer for (auto it : res) { cout << '(' << it[0] << ", " << it[1] << ')' << ' '; } return 0; }
Java
// Java program for the above approach import java.io.*; import java.util.*; class GFG { // For checking whether a cell lies // outside the matrix or not static Boolean is_outside(int row, int col, int r, int c) { if (r >= row || c >= col || r < 0 || c < 0) { return true; } return false; } // Function to rotate in clockwise manner static int[] next_turn(char previous_direction, int r, int c) { if (previous_direction == 'u') { // turn_right c += 1; previous_direction = 'r'; } else if (previous_direction == 'r') { // turn_down r += 1; previous_direction = 'd'; } else if (previous_direction == 'd') { // turn_left c -= 1; previous_direction = 'l'; } else if (previous_direction == 'l') { // turn_up r -= 1; previous_direction = 'u'; } int[] v = { previous_direction, r, c }; return v; } // Function to move in the same direction // as its prev_direction static int[] move_in_same_direction( char previous_direction, int r, int c) { if (previous_direction == 'r') c += 1; else if (previous_direction == 'u') r -= 1; else if (previous_direction == 'd') r += 1; else if (previous_direction == 'l') c -= 1; int[] v = { r, c }; return v; } // Function to find the spiral order of // of matrix according to given rules static int[][] spiralMatrixIII(int rows, int cols, int r, int c) { char previous_direction = 'r'; // For keeping track of no of steps // to go without turn int turning_elements = 2; // Count is for counting total cells // put in the res int count = 0; // Current_count is for keeping track // of how many cells need to // traversed in the same direction int current_count = 0; // For keeping track the number // of turns we have made int turn_count = 0; int limit = rows * cols; // For storing the co-ordinates int[][] arr = new int[limit][2]; while (count < limit) { // If the current cell is within // the board if (is_outside(rows, cols, r, c) == false) { arr[count][0] = r; arr[count][1] = c; count += 1; } current_count += 1; // After visiting turning elements // of cells we change our turn if (current_count == turning_elements) { // Changing our direction // we have to increase the // turn count turn_count += 1; // In Every 2nd turn increasing // the elements the turn visiting if (turn_count == 2) turning_elements += 1; // After every 3rd turn reset // the turn_count to 1 else if (turn_count == 3) turn_count = 1; // Changing direction to next // direction based on the // previous direction int[] store = next_turn(previous_direction, r, c); // converting integer back to Character previous_direction = (char)store[0]; r = store[1]; c = store[2]; // Reset the current_count current_count = 1; } else { int[] store = move_in_same_direction( previous_direction, r, c); r = store[0]; c = store[1]; } // Return the traversal } return arr; } // Driver Code public static void main(String[] args) { int N = 5; int M = 6; int X = 1; int Y = 4; int[][] arr = spiralMatrixIII(N, M, X, Y); String ans = ""; int len = arr.length; for (int i = 0; i < len; i++) { ans += "(" + arr[i][0] + "," + arr[i][1] + ") "; } System.out.println(ans); } } // This code is contributed by rj13to.
Python3
# Python program for the above approach # For checking whether a cell lies # outside the matrix or not def is_outside(row, col, r, c): if (r >= row or c >= col or r < 0 or c < 0): return True return False # Function to rotate in clockwise manner def next_turn(previous_direction, r, c): if (previous_direction == 'u'): # turn_right c += 1 previous_direction = 'r' elif (previous_direction == 'r'): # turn_down r += 1 previous_direction = 'd' elif (previous_direction == 'd'): # turn_left c -= 1 previous_direction = 'l' elif (previous_direction == 'l'): # turn_up r -= 1 previous_direction = 'u' return [previous_direction, r, c] # Function to move in the same direction # as its prev_direction def move_in_same_direction( previous_direction, r, c): if (previous_direction == 'r'): c += 1 elif (previous_direction == 'u'): r -= 1 elif(previous_direction == 'd'): r += 1 elif(previous_direction == 'l'): c -= 1 return [r, c] # Function to find the spiral order of # of matrix according to given rules def spiralMatrixIII(rows, cols, r, c): # For storing the co-ordinates res = [] previous_direction = 'r' # For keeping track of no of steps # to go without turn turning_elements = 2 # Count is for counting total cells # put in the res count = 0 # Current_count is for keeping track # of how many cells need to # traversed in the same direction current_count = 0 # For keeping track the number # of turns we have made turn_count = 0 limit = rows * cols while (count < limit): # If the current cell is within # the board if (is_outside(rows, cols, r, c) == False): res.append([r, c]) count += 1 current_count += 1 # After visiting turning elements # of cells we change our turn if (current_count == turning_elements): # Changing our direction # we have to increase the # turn count turn_count += 1 # In Every 2nd turn increasing # the elements the turn visiting if (turn_count == 2): turning_elements += 1 # After every 3rd turn reset # the turn_count to 1 elif (turn_count == 3): turn_count = 1 # Changing direction to next # direction based on the # previous direction store = next_turn(previous_direction, r, c) previous_direction = store[0] r = store[1] c = store[2] # Reset the current_count current_count = 1 else: store = move_in_same_direction( previous_direction, r, c) r = store[0] c = store[1] # Return the traversal return res # Driver Code N = 5 M = 6 X = 1 Y = 4 res = spiralMatrixIII(N, M, X, Y) # Display answer for vec in res: print('(', vec[0], ", ", vec[1], ')', end=" ") # This code is contributed by rj13to.
C#
// C# program for the above approach using System; using System.Collections.Generic; public class GFG { // For checking whether a cell lies // outside the matrix or not static Boolean is_outside(int row, int col, int r, int c) { if (r >= row || c >= col || r < 0 || c < 0) { return true; } return false; } // Function to rotate in clockwise manner static int[] next_turn(char previous_direction, int r, int c) { if (previous_direction == 'u') { // turn_right c += 1; previous_direction = 'r'; } else if (previous_direction == 'r') { // turn_down r += 1; previous_direction = 'd'; } else if (previous_direction == 'd') { // turn_left c -= 1; previous_direction = 'l'; } else if (previous_direction == 'l') { // turn_up r -= 1; previous_direction = 'u'; } int[] v = { previous_direction, r, c }; return v; } // Function to move in the same direction // as its prev_direction static int[] move_in_same_direction(char previous_direction, int r, int c) { if (previous_direction == 'r') c += 1; else if (previous_direction == 'u') r -= 1; else if (previous_direction == 'd') r += 1; else if (previous_direction == 'l') c -= 1; int[] v = { r, c }; return v; } // Function to find the spiral order of // of matrix according to given rules static int[,] spiralMatrixIII(int rows, int cols, int r, int c) { char previous_direction = 'r'; // For keeping track of no of steps // to go without turn int turning_elements = 2; // Count is for counting total cells // put in the res int count = 0; // Current_count is for keeping track // of how many cells need to // traversed in the same direction int current_count = 0; // For keeping track the number // of turns we have made int turn_count = 0; int limit = rows * cols; // For storing the co-ordinates int[,] arr = new int[limit,2]; while (count < limit) { // If the current cell is within // the board if (is_outside(rows, cols, r, c) == false) { arr[count,0] = r; arr[count,1] = c; count += 1; } current_count += 1; // After visiting turning elements // of cells we change our turn if (current_count == turning_elements) { // Changing our direction // we have to increase the // turn count turn_count += 1; // In Every 2nd turn increasing // the elements the turn visiting if (turn_count == 2) turning_elements += 1; // After every 3rd turn reset // the turn_count to 1 else if (turn_count == 3) turn_count = 1; // Changing direction to next // direction based on the // previous direction int[] store = next_turn(previous_direction, r, c); // converting integer back to char previous_direction = (char) store[0]; r = store[1]; c = store[2]; // Reset the current_count current_count = 1; } else { int[] store = move_in_same_direction(previous_direction, r, c); r = store[0]; c = store[1]; } // Return the traversal } return arr; } // Driver Code public static void Main(String[] args) { int N = 5; int M = 6; int X = 1; int Y = 4; int[,] arr = spiralMatrixIII(N, M, X, Y); String ans = ""; int len = arr.GetLength(0); for (int i = 0; i < len; i++) { ans += "(" + arr[i,0] + "," + arr[i,1] + ") "; } Console.WriteLine(ans); } } // This code is contributed by gauravrajput1
Javascript
<script> // javascript program for the above approach // For checking whether a cell lies // outside the matrix or not function is_outside(row , col , r , c) { if (r >= row || c >= col || r < 0 || c < 0) { return true; } return false; } // Function to rotate in clockwise manner function next_turn( previous_direction , r , c) { if (previous_direction == 'u') { // turn_right c += 1; previous_direction = 'r'; } else if (previous_direction == 'r') { // turn_down r += 1; previous_direction = 'd'; } else if (previous_direction == 'd') { // turn_left c -= 1; previous_direction = 'l'; } else if (previous_direction == 'l') { // turn_up r -= 1; previous_direction = 'u'; } var v = [ previous_direction, r, c ]; return v; } // Function to move in the same direction // as its prev_direction function move_in_same_direction( previous_direction , r , c) { if (previous_direction == 'r') c += 1; else if (previous_direction == 'u') r -= 1; else if (previous_direction == 'd') r += 1; else if (previous_direction == 'l') c -= 1; var v = [ r, c ]; return v; } // Function to find the spiral order of // of matrix according to given rules function spiralMatrixIII(rows , cols , r , c) { var previous_direction = 'r'; // For keeping track of no of steps // to go without turn var turning_elements = 2; // Count is for counting total cells // put in the res var count = 0; // Current_count is for keeping track // of how many cells need to // traversed in the same direction var current_count = 0; // For keeping track the number // of turns we have made var turn_count = 0; var limit = rows * cols; // For storing the co-ordinates var arr = Array(limit).fill().map(()=>Array(2).fill(0)); while (count < limit) { // If the current cell is within // the board if (is_outside(rows, cols, r, c) == false) { arr[count][0] = r; arr[count][1] = c; count += 1; } current_count += 1; // After visiting turning elements // of cells we change our turn if (current_count == turning_elements) { // Changing our direction // we have to increase the // turn count turn_count += 1; // In Every 2nd turn increasing // the elements the turn visiting if (turn_count == 2) turning_elements += 1; // After every 3rd turn reset // the turn_count to 1 else if (turn_count == 3) turn_count = 1; // Changing direction to next // direction based on the // previous direction var store = next_turn(previous_direction, r, c); // converting integer back to Character previous_direction = store[0]; r = store[1]; c = store[2]; // Reset the current_count current_count = 1; } else { var store = move_in_same_direction(previous_direction, r, c); r = store[0]; c = store[1]; } // Return the traversal } return arr; } // Driver Code var N = 5; var M = 6; var X = 1; var Y = 4; var arr = spiralMatrixIII(N, M, X, Y); var ans = ""; var len = arr.length; for (i = 0; i < len; i++) { ans += "(" + arr[i][0] + "," + arr[i][1] + ") "; } document.write(ans); // This code is contributed by gauravrajput1 </script>
(1, 4) (1, 5) (2, 5) (2, 4) (2, 3) (1, 3) (0, 3) (0, 4) (0, 5) (3, 5) (3, 4) (3, 3) (3, 2) (2, 2) (1, 2) (0, 2) (4, 5) (4, 4) (4, 3) (4, 2) (4, 1) (3, 1) (2, 1) (1, 1) (0, 1) (4, 0) (3, 0) (2, 0) (1, 0) (0, 0)
Complejidad de Tiempo: O(N 2 )
Espacio Auxiliar: O(1)
Publicación traducida automáticamente
Artículo escrito por sinhadiptiprakash y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA