Dado un árbol binario, la tarea es hacer un recorrido en orden inverso usando Morris Traversal.
Prerrequisitos:
Morris Traversals
Threaded Binary Trees
En un árbol binario con n Nodes, hay n + 1 punteros NULL que desperdician memoria. Por lo tanto, los árboles binarios enhebrados utilizan estos punteros NULL para ahorrar mucha memoria.
Por lo tanto, en los árboles binarios enhebrados, estos punteros NULL almacenarán información útil.
1) Almacenar la información del predecesor en punteros izquierdos NULL únicamente, llamados árboles binarios de hilos izquierdos.
2) Almacenar la información del sucesor solo en punteros NULL a la derecha, llamados árboles binarios con subprocesos a la derecha.
3) Almacenar información predecesora en punteros NULL izquierdos e información sucesora en punteros NULL derechos, llamados árboles binarios completamente enhebrados o simplemente árboles binarios enhebrados.
El recorrido de Morris se puede utilizar para realizar un recorrido en orden, un recorrido en orden inverso, un recorrido en preorden con memoria extra constante consumida O(1).
Reverse Morris Traversal: es simplemente la forma inversa de Morris Traversal. En el recorrido de Morris inverso, primero cree enlaces al sucesor en orden del Node actual e imprima los datos usando estos enlaces, y finalmente revierta los cambios para restaurar el árbol original, que dar un recorrido en orden inverso.
Algoritmo:
1) Initialize Current as root. 2) While current is not NULL : 2.1) If current has no right child a) Visit the current node. b) Move to the left child of current. 2.2) Else, here we have 2 cases: a) Find the inorder successor of current node. Inorder successor is the left most node in the right subtree or right child itself. b) If the left child of the inorder successor is NULL: 1) Set current as the left child of its inorder successor. 2) Move current node to its right. c) Else, if the threaded link between the current node and it's inorder successor already exists : 1) Set left pointer of the inorder successor as NULL. 2) Visit Current node. 3) Move current to it's left child.
C++
// CPP code for reverse Morris Traversal #include<bits/stdc++.h> using namespace std; // Node structure struct Node { int data; Node *left, *right; }; // helper function to create a new node Node *newNode(int data){ Node *temp = new Node; temp->data = data; temp->right = temp->left = NULL; return temp; } // function for reverse inorder traversal void MorrisReverseInorder(Node *root) { if(!root) return ; // Auxiliary node pointers Node *curr, *successor; // initialize current as root curr = root; while(curr) { // case-1, if curr has no right child then // visit current and move to left child if(curr -> right == NULL) { cout << curr->data << " "; curr = curr->left; } // case-2 else { // find the inorder successor of // current node i.e left most node in // right subtree or right child itself successor = curr->right; // finding left most in right subtree while(successor->left != NULL && successor->left != curr) successor = successor->left; // if the left of inorder successor is NULL if(successor->left == NULL) { // then connect left link to current node successor->left = curr; // move current to right child curr = curr->right; } // otherwise inorder successor's left is // not NULL and already left is linked // with current node else { successor->left = NULL; // visiting the current node cout << curr->data << " "; // move current to its left child curr = curr->left; } } } } // Driver code int main() { /* Constructed binary tree is 1 / \ 2 3 / \ / \ 4 5 6 7 */ Node *root = newNode(1); root->left = newNode(2); root->right = newNode(3); root->left->left = newNode(4); root->left->right = newNode(5); root->right->left = newNode(6); root->right->right = newNode(7); //reverse inorder traversal. MorrisReverseInorder(root); return 0; }
Java
// Java code for reverse Morris Traversal class GFG { // Node structure static class Node { int data; Node left, right; }; // helper function to create a new node static Node newNode(int data) { Node temp = new Node(); temp.data = data; temp.right = temp.left = null; return temp; } // function for reverse inorder traversal static void MorrisReverseInorder(Node root) { if(root == null) return ; // Auxiliary node pointers Node curr, successor; // initialize current as root curr = root; while(curr != null) { // case-1, if curr has no right child then // visit current and move to left child if(curr . right == null) { System.out.print( curr.data + " "); curr = curr.left; } // case-2 else { // find the inorder successor of // current node i.e left most node in // right subtree or right child itself successor = curr.right; // finding left most in right subtree while(successor.left != null && successor.left != curr) successor = successor.left; // if the left of inorder successor is null if(successor.left == null) { // then connect left link to current node successor.left = curr; // move current to right child curr = curr.right; } // otherwise inorder successor's left is // not null and already left is linked // with current node else { successor.left = null; // visiting the current node System.out.print( curr.data + " "); // move current to its left child curr = curr.left; } } } } // Driver code public static void main(String args[]) { /* Constructed binary tree is 1 / \ 2 3 / \ / \ 4 5 6 7 */ Node root = newNode(1); root.left = newNode(2); root.right = newNode(3); root.left.left = newNode(4); root.left.right = newNode(5); root.right.left = newNode(6); root.right.right = newNode(7); // reverse inorder traversal. MorrisReverseInorder(root); } } // This code is contributed by Arnab Kundu
Python3
# Python3 for reverse Morris Traversal # Utility function to create a new # tree node class newNode: def __init__(self,data): self.data = data self.left = self.right = None # function for reverse inorder traversal def MorrisReverseInorder(root): if( not root) : return # initialize current as root curr = root successor = 0 while(curr): # case-1, if curr has no right child then # visit current and move to left child if(curr.right == None) : print(curr.data, end = " ") curr = curr.left # case-2 else: # find the inorder successor of # current node i.e left most node in # right subtree or right child itself successor = curr.right # finding left most in right subtree while(successor.left != None and successor.left != curr): successor = successor.left # if the left of inorder successor is None if(successor.left == None) : # then connect left link to current node successor.left = curr # move current to right child curr = curr.right # otherwise inorder successor's left is # not None and already left is linked # with current node else: successor.left = None # visiting the current node print(curr.data, end = " " ) # move current to its left child curr = curr.left # Driver code if __name__ =="__main__": """ Constructed binary tree is 1 / \ 2 3 / \ / \ 4 5 6 7 """ root = newNode(1) root.left = newNode(2) root.right = newNode(3) root.left.left = newNode(4) root.left.right = newNode(5) root.right.left = newNode(6) root.right.right = newNode(7) #reverse inorder traversal. MorrisReverseInorder(root) # This code is contributed by # Shubham Singh(SHUBHAMSINGH10)
C#
// C# code for reverse Morris Traversal using System; class GFG { // Node structure public class Node { public int data; public Node left, right; }; // helper function to create a new node static Node newNode(int data) { Node temp = new Node(); temp.data = data; temp.right = temp.left = null; return temp; } // function for reverse inorder traversal static void MorrisReverseInorder(Node root) { if(root == null) return ; // Auxiliary node pointers Node curr, successor; // initialize current as root curr = root; while(curr != null) { // case-1, if curr has no right child then // visit current and move to left child if(curr . right == null) { Console.Write( curr.data + " "); curr = curr.left; } // case-2 else { // find the inorder successor of // current node i.e left most node in // right subtree or right child itself successor = curr.right; // finding left most in right subtree while(successor.left != null && successor.left != curr) successor = successor.left; // if the left of inorder successor is null if(successor.left == null) { // then connect left link to current node successor.left = curr; // move current to right child curr = curr.right; } // otherwise inorder successor's left is // not null and already left is linked // with current node else { successor.left = null; // visiting the current node Console.Write( curr.data + " "); // move current to its left child curr = curr.left; } } } } // Driver code public static void Main(String []args) { /* Constructed binary tree is 1 / \ 2 3 / \ / \ 4 5 6 7 */ Node root = newNode(1); root.left = newNode(2); root.right = newNode(3); root.left.left = newNode(4); root.left.right = newNode(5); root.right.left = newNode(6); root.right.right = newNode(7); // reverse inorder traversal. MorrisReverseInorder(root); } } // This code contributed by Rajput-Ji
Javascript
<script> // Javascript code for reverse Morris Traversal // Node structure class Node { constructor() { this.data = 0; this.left = null; this.right = null; } }; // Helper function to create a new node function newNode(data) { var temp = new Node(); temp.data = data; temp.right = temp.left = null; return temp; } // Function for reverse inorder traversal function MorrisReverseInorder(root) { if (root == null) return; // Auxiliary node pointers var curr, successor; // Initialize current as root curr = root; while (curr != null) { // case-1, if curr has no right child then // visit current and move to left child if (curr . right == null) { document.write( curr.data + " "); curr = curr.left; } // case-2 else { // Find the inorder successor of // current node i.e left most node in // right subtree or right child itself successor = curr.right; // Finding left most in right subtree while(successor.left != null && successor.left != curr) successor = successor.left; // If the left of inorder successor is null if (successor.left == null) { // Then connect left link to current node successor.left = curr; // Move current to right child curr = curr.right; } // Otherwise inorder successor's left is // not null and already left is linked // with current node else { successor.left = null; // Visiting the current node document.write( curr.data + " "); // Move current to its left child curr = curr.left; } } } } // Driver code /* Constructed binary tree is 1 / \ 2 3 / \ / \ 4 5 6 7 */ var root = newNode(1); root.left = newNode(2); root.right = newNode(3); root.left.left = newNode(4); root.left.right = newNode(5); root.right.left = newNode(6); root.right.right = newNode(7); // Reverse inorder traversal. MorrisReverseInorder(root); // This code is contributed by rrrtnx </script>
7 3 6 1 5 2 4
Tiempo Complejidad : O(n)
Espacio Auxiliar : O(1)
Publicación traducida automáticamente
Artículo escrito por AnishSinghWalia y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA