Dado un árbol binario completo, atraviéselo de modo que todos los Nodes de los límites se visiten en el sentido contrario a las agujas del reloj, comenzando desde la raíz.
Ejemplo:
Input: 18 / \ 15 30 / \ / \ 40 50 100 20 Output: 18 15 40 50 100 20 30
Acercarse:
- Atraviese los Nodes más a la izquierda del árbol de arriba hacia abajo. (Límite izquierdo)
- Atraviese el nivel más bajo del árbol de izquierda a derecha. (Nodes de hoja)
- Atraviese los Nodes más a la derecha del árbol de abajo hacia arriba. (Límite derecho)
Podemos atravesar el límite izquierdo con bastante facilidad con la ayuda de un bucle while que comprueba si el Node no tiene ningún hijo izquierdo. De manera similar, podemos atravesar el límite derecho con bastante facilidad con la ayuda de un bucle while que verifica cuándo el Node no tiene ningún hijo correcto.
El principal desafío aquí es atravesar el último nivel del árbol en orden de izquierda a derecha. Para atravesar niveles, hay BFS y el orden de izquierda a derecha se puede realizar presionando primero los Nodes izquierdos en la cola. Entonces, lo único que queda ahora es asegurarse de que sea el último nivel. Simplemente verifique si el Node tiene algún hijo e inclúyalo solo.
Habrá que tener especial cuidado en el caso de las esquinas de que no se vuelvan a atravesar los mismos Nodes. En el ejemplo anterior, 40 es parte del límite izquierdo, así como de los Nodes de hoja. De manera similar, 20 es parte del límite derecho, así como de los Nodes de hoja.
Entonces tendremos que atravesar solo hasta el penúltimo Node de ambos límites en ese caso. También tenga en cuenta que no debemos atravesar la raíz nuevamente.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; /* A binary tree node has data, pointer to left child and a pointer to right child */ struct Node { int data; struct Node *left, *right; }; /* Helper function that allocates a new node with the given data and NULL left and right pointers. */ struct Node* newNode(int data) { Node* temp = new Node; temp->data = data; temp->left = temp->right = NULL; return temp; } // Function to print the nodes of a complete // binary tree in boundary traversal order void boundaryTraversal(Node* root) { if (root) { // If there is only 1 node print it // and return if (!(root->left) && !(root->right)) { cout << root->data << endl; return; } // List to store order of traversed // nodes vector<Node*> list; list.push_back(root); // Traverse left boundary without root // and last node Node* L = root->left; while (L->left) { list.push_back(L); L = L->left; } // BFS designed to only include leaf nodes queue<Node*> q; q.push(root); while (!q.empty()) { Node* temp = q.front(); q.pop(); if (!(temp->left) && !(temp->right)) { list.push_back(temp); } if (temp->left) { q.push(temp->left); } if (temp->right) { q.push(temp->right); } } // Traverse right boundary without root // and last node vector<Node*> list_r; Node* R = root->right; while (R->right) { list_r.push_back(R); R = R->right; } // Reversing the order reverse(list_r.begin(), list_r.end()); // Concatenating the two lists list.insert(list.end(), list_r.begin(), list_r.end()); // Printing the node's data from the list for (auto i : list) { cout << i->data << " "; } cout << endl; return; } } // Driver code int main() { // Root node of the tree Node* root = newNode(20); root->left = newNode(8); root->right = newNode(22); root->left->left = newNode(4); root->left->right = newNode(12); root->right->left = newNode(10); root->right->right = newNode(25); boundaryTraversal(root); return 0; }
Java
// Java implementation of the approach import java.util.*; class GFG{ /* A binary tree node has data, pointer to left child and a pointer to right child */ static class Node { int data; Node left, right; }; /* Helper function that allocates a new node with the given data and null left and right pointers. */ static Node newNode(int data) { Node temp = new Node(); temp.data = data; temp.left = temp.right = null; return temp; } // Function to print the nodes of a complete // binary tree in boundary traversal order static void boundaryTraversal(Node root) { if (root != null) { // If there is only 1 node print it // and return if ((root.left == null) && (root.right == null)) { System.out.print(root.data +"\n"); return; } // List to store order of traversed // nodes Vector<Node> list = new Vector<Node>(); list.add(root); // Traverse left boundary without root // and last node Node L = root.left; while (L.left != null) { list.add(L); L = L.left; } // BFS designed to only include leaf nodes Queue<Node> q = new LinkedList<>(); q.add(root); while (!q.isEmpty()) { Node temp = q.peek(); q.remove(); if ((temp.left == null) && (temp.right == null)) { list.add(temp); } if (temp.left != null) { q.add(temp.left); } if (temp.right != null) { q.add(temp.right); } } // Traverse right boundary without root // and last node Vector<Node> list_r = new Vector<Node>(); Node R = root.right; while (R.right != null) { list_r.add(R); R = R.right; } // Reversing the order Collections.reverse(list_r); // Concatenating the two lists list.addAll(list_r); // Printing the node's data from the list for (Node i : list) { System.out.print(i.data + " "); } System.out.println(); return; } } // Driver code public static void main(String[] args) { // Root node of the tree Node root = newNode(20); root.left = newNode(8); root.right = newNode(22); root.left.left = newNode(4); root.left.right = newNode(12); root.right.left = newNode(10); root.right.right = newNode(25); boundaryTraversal(root); } } // This code is contributed by Princi Singh
Python
# Python implementation of the approach from collections import deque # A binary tree node class Node: # A constructor for making a new node def __init__(self, key): self.data = key self.left = None self.right = None # Function to print the nodes of a complete # binary tree in boundary traversal order def boundaryTraversal(root): # If there is only 1 node print it and return if root: if not root.left and not root.right: print (root.data) return # List to store order of traversed nodes list = [] list.append(root) # Traverse left boundary without root # and last node temp = root.left while temp.left: list.append(temp) temp = temp.left # BFS designed to only include leaf nodes q = deque() q.append(root) while len(q) != 0: x = q.pop() if not x.left and not x.right: list.append(x) if x.right: q.append(x.right) if x.left: q.append(x.left) # Traverse right boundary without root # and last node list_r = [] temp = root.right while temp.right: list.append(temp) temp = temp.right # Reversing the order list_r = list_r[::-1] # Concatenating the two lists list += list_r # Printing the node's data from the list print (" ".join([str(i.data) for i in list])) return # Root node of the tree root = Node(20) root.left = Node(8) root.right = Node(22) root.left.left = Node(4) root.left.right = Node(12) root.right.left = Node(10) root.right.right = Node(25) boundaryTraversal(root)
C#
// C# implementation of the approach using System; using System.Collections.Generic; class GFG { /* A binary tree node has data, pointer to left child and a pointer to right child */ class Node { public int data; public Node left, right; }; /* Helper function that allocates a new node with the given data and null left and right pointers. */ static Node newNode(int data) { Node temp = new Node(); temp.data = data; temp.left = temp.right = null; return temp; } // Function to print the nodes of a complete // binary tree in boundary traversal order static void boundaryTraversal(Node root) { if (root != null) { // If there is only 1 node print it // and return if ((root.left == null) && (root.right == null)) { Console.Write(root.data + "\n"); return; } // List to store order of traversed // nodes List<Node> list = new List<Node>(); list.Add(root); // Traverse left boundary without root // and last node Node L = root.left; while (L.left != null) { list.Add(L); L = L.left; } // BFS designed to only include leaf nodes Queue<Node> q = new Queue<Node>(); q.Enqueue(root); while (q.Count != 0) { Node temp = q.Peek(); q.Dequeue(); if ((temp.left == null) && (temp.right == null)) { list.Add(temp); } if (temp.left != null) { q.Enqueue(temp.left); } if (temp.right != null) { q.Enqueue(temp.right); } } // Traverse right boundary without root // and last node List<Node> list_r = new List<Node>(); Node R = root.right; while (R.right != null) { list_r.Add(R); R = R.right; } // Reversing the order list_r.Reverse(); // Concatenating the two lists list.InsertRange(list.Count-1, list_r); // Printing the node's data from the list foreach (Node i in list) { Console.Write(i.data + " "); } Console.WriteLine(); return; } } // Driver code public static void Main(String[] args) { // Root node of the tree Node root = newNode(20); root.left = newNode(8); root.right = newNode(22); root.left.left = newNode(4); root.left.right = newNode(12); root.right.left = newNode(10); root.right.right = newNode(25); boundaryTraversal(root); } } // This code is contributed by 29AjayKumar
Javascript
<script> // JavaScript implementation of the approach /* A binary tree node has data, pointer to left child and a pointer to right child */ class Node { constructor(data) { this.left = null; this.right = null; this.data = data; } } /* Helper function that allocates a new node with the given data and null left and right pointers. */ function newNode(data) { let temp = new Node(data); return temp; } // Function to print the nodes of a complete // binary tree in boundary traversal order function boundaryTraversal(root) { if (root != null) { // If there is only 1 node print it // and return if ((root.left == null) && (root.right == null)) { document.write(root.data +"</br>"); return; } // List to store order of traversed // nodes let list = []; list.push(root); // Traverse left boundary without root // and last node let L = root.left; while (L.left != null) { list.push(L); L = L.left; } // BFS designed to only include leaf nodes let q = []; q.push(root); while (q.length > 0) { let temp = q[0]; q.shift(); if ((temp.left == null) && (temp.right == null)) { list.push(temp); } if (temp.left != null) { q.push(temp.left); } if (temp.right != null) { q.push(temp.right); } } // Traverse right boundary without root // and last node let list_r = []; let R = root.right; while (R.right != null) { list_r.push(R); R = R.right; } // Reversing the order list_r.reverse(); // Concatenating the two lists for(let i = 0; i < list_r.length; i++) { list.push(list_r[i]); } // Printing the node's data from the list for (let i = 0; i < list.length; i++) { document.write(list[i].data + " "); } document.write("</br>"); return; } } // Root node of the tree let root = newNode(20); root.left = newNode(8); root.right = newNode(22); root.left.left = newNode(4); root.left.right = newNode(12); root.right.left = newNode(10); root.right.right = newNode(25); boundaryTraversal(root); </script>
20 8 4 12 10 25 22