Recorrido iterativo de preorden

Dado un árbol binario, escriba una función iterativa para imprimir el recorrido de preorden del árbol binario dado.
Consulte esto para el recorrido recursivo de orden anticipado de Binary Tree. Para convertir un procedimiento inherentemente recursivo en iterativo, necesitamos una pila explícita. 

A continuación, se muestra un proceso iterativo simple basado en la pila para imprimir el recorrido del pedido previo. 

  1. Cree un Node de pila vacíoStack y empuje el Node raíz para apilar. 
  2. Haga lo siguiente mientras nodeStack no esté vacío. 
    1. Extraiga un elemento de la pila e imprímalo. 
    2. Empuje el elemento secundario derecho de un elemento reventado para apilar 
    3. Empuje el elemento secundario izquierdo de un elemento reventado para apilar

El hijo derecho se empuja antes que el hijo izquierdo para asegurarse de que el subárbol izquierdo se procese primero.

C++

// C++ program to implement iterative preorder traversal
#include <bits/stdc++.h>
 
using namespace std;
 
/* A binary tree node has data, left child and right child */
struct node {
    int data;
    struct node* left;
    struct node* right;
};
 
/* Helper function that allocates a new node with the given data and
   NULL left and right  pointers.*/
struct node* newNode(int data)
{
    struct node* node = new struct node;
    node->data = data;
    node->left = NULL;
    node->right = NULL;
    return (node);
}
 
// An iterative process to print preorder traversal of Binary tree
void iterativePreorder(node* root)
{
    // Base Case
    if (root == NULL)
        return;
 
    // Create an empty stack and push root to it
    stack<node*> nodeStack;
    nodeStack.push(root);
 
    /* Pop all items one by one. Do following for every popped item
       a) print it
       b) push its right child
       c) push its left child
    Note that right child is pushed first so that left is processed first */
    while (nodeStack.empty() == false) {
        // Pop the top item from stack and print it
        struct node* node = nodeStack.top();
        printf("%d ", node->data);
        nodeStack.pop();
 
        // Push right and left children of the popped node to stack
        if (node->right)
            nodeStack.push(node->right);
        if (node->left)
            nodeStack.push(node->left);
    }
}
 
// Driver program to test above functions
int main()
{
    /* Constructed binary tree is
            10
          /   \
        8      2
      /  \    /
    3     5  2
  */
    struct node* root = newNode(10);
    root->left = newNode(8);
    root->right = newNode(2);
    root->left->left = newNode(3);
    root->left->right = newNode(5);
    root->right->left = newNode(2);
    iterativePreorder(root);
    return 0;
}

Java

// Java program to implement iterative preorder traversal
import java.util.Stack;
 
// A binary tree node
class Node {
 
    int data;
    Node left, right;
 
    Node(int item)
    {
        data = item;
        left = right = null;
    }
}
 
class BinaryTree {
 
    Node root;
 
    void iterativePreorder()
    {
        iterativePreorder(root);
    }
 
    // An iterative process to print preorder traversal of Binary tree
    void iterativePreorder(Node node)
    {
 
        // Base Case
        if (node == null) {
            return;
        }
 
        // Create an empty stack and push root to it
        Stack<Node> nodeStack = new Stack<Node>();
        nodeStack.push(root);
 
        /* Pop all items one by one. Do following for every popped item
         a) print it
         b) push its right child
         c) push its left child
         Note that right child is pushed first so that left is processed first */
        while (nodeStack.empty() == false) {
 
            // Pop the top item from stack and print it
            Node mynode = nodeStack.peek();
            System.out.print(mynode.data + " ");
            nodeStack.pop();
 
            // Push right and left children of the popped node to stack
            if (mynode.right != null) {
                nodeStack.push(mynode.right);
            }
            if (mynode.left != null) {
                nodeStack.push(mynode.left);
            }
        }
    }
 
    // driver program to test above functions
    public static void main(String args[])
    {
        BinaryTree tree = new BinaryTree();
        tree.root = new Node(10);
        tree.root.left = new Node(8);
        tree.root.right = new Node(2);
        tree.root.left.left = new Node(3);
        tree.root.left.right = new Node(5);
        tree.root.right.left = new Node(2);
        tree.iterativePreorder();
    }
}
 
// This code has been contributed by Mayank Jaiswal

Python3

# Python program to perform iterative preorder traversal
 
# A binary tree node
class Node:
 
    # Constructor to create a new node
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None
 
# An iterative process to print preorder traversal of BT
def iterativePreorder(root):
     
    # Base CAse
    if root is None:
        return
 
    # create an empty stack and push root to it
    nodeStack = []
    nodeStack.append(root)
 
    # Pop all items one by one. Do following for every popped item
    # a) print it
    # b) push its right child
    # c) push its left child
    # Note that right child is pushed first so that left
    # is processed first */
    while(len(nodeStack) > 0):
         
        # Pop the top item from stack and print it
        node = nodeStack.pop()
        print (node.data, end=" ")
         
        # Push right and left children of the popped node
        # to stack
        if node.right is not None:
            nodeStack.append(node.right)
        if node.left is not None:
            nodeStack.append(node.left)
     
# Driver program to test above function
root = Node(10)
root.left = Node(8)
root.right = Node(2)
root.left.left = Node(3)
root.left.right = Node(5)
root.right.left = Node(2)
iterativePreorder(root)
 
# This code is contributed by Nikhil Kumar Singh(nickzuck_007)

C#

// C# program to implement iterative
// preorder traversal
using System;
using System.Collections.Generic;
 
// A binary tree node
public class Node {
    public int data;
    public Node left, right;
 
    public Node(int item)
    {
        data = item;
        left = right = null;
    }
}
 
class GFG {
    public Node root;
 
    public virtual void iterativePreorder()
    {
        iterativePreorder(root);
    }
 
    // An iterative process to print preorder
    // traversal of Binary tree
    public virtual void iterativePreorder(Node node)
    {
 
        // Base Case
        if (node == null) {
            return;
        }
 
        // Create an empty stack and push root to it
        Stack<Node> nodeStack = new Stack<Node>();
        nodeStack.Push(root);
 
        /* Pop all items one by one. Do following
       for every popped item
    a) print it
    b) push its right child
    c) push its left child
    Note that right child is pushed first so
    that left is processed first */
        while (nodeStack.Count > 0) {
 
            // Pop the top item from stack and print it
            Node mynode = nodeStack.Peek();
            Console.Write(mynode.data + " ");
            nodeStack.Pop();
 
            // Push right and left children of
            // the popped node to stack
            if (mynode.right != null) {
                nodeStack.Push(mynode.right);
            }
            if (mynode.left != null) {
                nodeStack.Push(mynode.left);
            }
        }
    }
 
    // Driver Code
    public static void Main(string[] args)
    {
        GFG tree = new GFG();
        tree.root = new Node(10);
        tree.root.left = new Node(8);
        tree.root.right = new Node(2);
        tree.root.left.left = new Node(3);
        tree.root.left.right = new Node(5);
        tree.root.right.left = new Node(2);
        tree.iterativePreorder();
    }
}
 
// This code is contributed by Shrikant13

JavaScript

<script>
  
// Javascript program to implement iterative
// preorder traversal
 
// A binary tree node
class Node
{
    constructor(item)
    {
        this.data = item;
        this.left = null;
        this.right = null;
    }
}
 
var root = null;
 
// An iterative process to print preorder
// traversal of Binary tree
function iterativePreorder(node)
{
     
    // Base Case
    if (node == null)
    {
        return;
    }
     
    // Create an empty stack and push root to it
    var nodeStack = [];
    nodeStack.push(root);
     
    /* Pop all items one by one. Do following
    for every popped item
    a) print it
    b) push its right child
    c) push its left child
    Note that right child is pushed first so
    that left is processed first */
    while (nodeStack.length > 0)
    {
         
        // Pop the top item from stack and print it
        var mynode = nodeStack[nodeStack.length - 1];
        document.write(mynode.data + " ");
        nodeStack.pop();
         
        // Push right and left children of
        // the popped node to stack
        if (mynode.right != null)
        {
            nodeStack.push(mynode.right);
        }
        if (mynode.left != null)
        {
            nodeStack.push(mynode.left);
        }
    }
}
 
// Driver Code
root = new Node(10);
root.left = new Node(8);
root.right = new Node(2);
root.left.left = new Node(3);
root.left.right = new Node(5);
root.right.left = new Node(2);
 
iterativePreorder(root);
 
// This code is contributed by itsok
 
</script>
Producción: 

10 8 3 5 2 2

 

Complejidad Temporal : O(N) 
Espacio Auxiliar : O(H), donde H es la altura del árbol.

Otra solución : en la solución anterior, podemos ver que el elemento secundario izquierdo aparece tan pronto como se empuja a la pila, por lo tanto, no es necesario empujarlo a la pila. 

La idea es comenzar a recorrer el árbol desde el Node raíz y seguir imprimiendo el elemento secundario izquierdo mientras existe y, simultáneamente, empujar el elemento secundario derecho de cada Node en una pila auxiliar. Una vez que alcancemos un Node nulo, extraiga un hijo derecho de la pila auxiliar y repita el proceso mientras la pila auxiliar no esté vacía. 

Esta es una microoptimización sobre el enfoque anterior, ambas soluciones usan un espacio auxiliar asintóticamente similar.

A continuación se muestra la implementación del enfoque anterior: 

C++

#include <bits/stdc++.h>
using namespace std;
 
// Tree Node
struct Node {
    int data;
    Node *left, *right;
 
    Node(int data)
    {
        this->data = data;
        this->left = this->right = NULL;
    }
};
 
// Iterative function to do Preorder traversal of the tree
void preorderIterative(Node* root)
{
    if (root == NULL)
        return;
 
    stack<Node*> st;
 
    // start from root node (set current node to root node)
    Node* curr = root;
 
    // run till stack is not empty or current is
    // not NULL
    while (!st.empty() || curr != NULL) {
        // Print left children while exist
        // and keep pushing right into the
        // stack.
        while (curr != NULL) {
            cout << curr->data << " ";
 
            if (curr->right)
                st.push(curr->right);
 
            curr = curr->left;
        }
 
        // We reach when curr is NULL, so We
        // take out a right child from stack
        if (st.empty() == false) {
            curr = st.top();
            st.pop();
        }
    }
}
 
// Driver Code
int main()
{
    Node* root = new Node(10);
    root->left = new Node(20);
    root->right = new Node(30);
    root->left->left = new Node(40);
    root->left->left->left = new Node(70);
    root->left->right = new Node(50);
    root->right->left = new Node(60);
    root->left->left->right = new Node(80);
 
    preorderIterative(root);
 
    return 0;
}

Java

import java.util.Stack;
 
// A binary tree node
class Node
{
    int data;
    Node left, right;
 
    Node(int item)
    {
        data = item;
        left = right = null;
    }
}
 
class BinaryTree{
 
Node root;
 
void preorderIterative()
{
    preorderIterative(root);
}
 
// Iterative function to do Preorder
// traversal of the tree
void preorderIterative(Node node)
{
    if (node == null)
    {
        return;
    }
 
    Stack<Node> st = new Stack<Node>();
     
    // Start from root node (set curr
    // node to root node)
    Node curr = node;
     
    // Run till stack is not empty or
    // current is not NULL
    while (curr != null || !st.isEmpty())
    {
         
        // Print left children while exist
        // and keep pushing right into the 
        // stack.
        while (curr != null)
        {
            System.out.print(curr.data + " ");
             
            if (curr.right != null)
                st.push(curr.right);
                 
            curr = curr.left;
        }
         
        // We reach when curr is NULL, so We
        // take out a right child from stack
        if (!st.isEmpty())
        {
            curr = st.pop();
        }
    }
}
 
// Driver code
public static void main(String args[])
{
    BinaryTree tree = new BinaryTree();
     
    tree.root = new Node(10);
    tree.root.left = new Node(20);
    tree.root.right = new Node(30);
    tree.root.left.left = new Node(40);
    tree.root.left.left.left = new Node(70);
    tree.root.left.right = new Node(50);
    tree.root.right.left = new Node(60);
    tree.root.left.left.right = new Node(80);
     
    tree.preorderIterative();
}
}
 
// This code is contributed by Vivek Singh Bhadauria

Python3

# Tree Node
class Node:
 
    def __init__(self, data = 0):
        self.data = data
        self.left = None
        self.right = None
     
# Iterative function to do Preorder traversal of the tree
def preorderIterative(root):
 
    if (root == None):
        return
 
    st = []
 
    # start from root node (set current node to root node)
    curr = root
 
    # run till stack is not empty or current is
    # not NULL
    while (len(st) or curr != None):
     
        # Print left children while exist
        # and keep appending right into the
        # stack.
        while (curr != None):
         
            print(curr.data, end = " ")
 
            if (curr.right != None):
                st.append(curr.right)
 
            curr = curr.left
         
        # We reach when curr is NULL, so We
        # take out a right child from stack
        if (len(st) > 0):
            curr = st[-1]
            st.pop()
             
# Driver Code
 
root = Node(10)
root.left = Node(20)
root.right = Node(30)
root.left.left = Node(40)
root.left.left.left = Node(70)
root.left.right = Node(50)
root.right.left = Node(60)
root.left.left.right = Node(80)
 
preorderIterative(root)
 
# This code is contributed by Arnab Kundu

C#

using System;
using System.Collections.Generic;
 
// A binary tree node
public class Node
{
    public int data;
    public Node left, right;
 
    public Node(int item)
    {
        data = item;
        left = right = null;
    }
}
 
public class BinaryTree{
 
Node root;
 
void preorderIterative()
{
    preorderIterative(root);
}
 
// Iterative function to do Preorder
// traversal of the tree
void preorderIterative(Node node)
{
    if (node == null)
    {
        return;
    }
 
    Stack<Node> st = new Stack<Node>();
     
    // Start from root node (set curr
    // node to root node)
    Node curr = node;
     
    // Run till stack is not empty or
    // current is not NULL
    while (curr != null || st.Count!=0)
    {
         
        // Print left children while exist
        // and keep pushing right into the 
        // stack.
        while (curr != null)
        {
            Console.Write(curr.data + " ");
             
            if (curr.right != null)
                st.Push(curr.right);
                 
            curr = curr.left;
        }
         
        // We reach when curr is NULL, so We
        // take out a right child from stack
        if (st.Count != 0)
        {
            curr = st.Pop();
        }
    }
}
 
// Driver code
public static void Main(String []args)
{
    BinaryTree tree = new BinaryTree();
     
    tree.root = new Node(10);
    tree.root.left = new Node(20);
    tree.root.right = new Node(30);
    tree.root.left.left = new Node(40);
    tree.root.left.left.left = new Node(70);
    tree.root.left.right = new Node(50);
    tree.root.right.left = new Node(60);
    tree.root.left.left.right = new Node(80);
     
    tree.preorderIterative();
}
}
 
// This code is contributed by Amit Katiyar

JavaScript

<script>
 
class Node
{
    constructor(item)
    {
        this.left = null;
        this.right = null;
        this.data = item;
    }
}
 
let root;
 
// Iterative function to do Preorder
// traversal of the tree
function preorderiterative(node)
{
    if (node == null)
    {
        return;
    }
 
    let st = [];
 
    // Start from root node (set curr
    // node to root node)
    let curr = node;
 
    // Run till stack is not empty or
    // current is not NULL
    while (curr != null || st.length > 0)
    {
         
        // Print left children while exist
        // and keep pushing right into the
        // stack.
        while (curr != null)
        {
            document.write(curr.data + " ");
 
            if (curr.right != null)
                st.push(curr.right);
 
            curr = curr.left;
        }
 
        // We reach when curr is NULL, so We
        // take out a right child from stack
        if (st.length > 0)
        {
            curr = st.pop();
        }
    }
}
 
function preorderIterative()
{
    preorderiterative(root);
}
 
// Driver code
root = new Node(10);
root.left = new Node(20);
root.right = new Node(30);
root.left.left = new Node(40);
root.left.left.left = new Node(70);
root.left.right = new Node(50);
root.right.left = new Node(60);
root.left.left.right = new Node(80);
  
preorderIterative();
 
// This code is contributed by decode2207
 
</script>
Producción: 

10 20 40 70 80 50 30 60

 

Complejidad Temporal : O(N) 
Espacio Auxiliar : O(H), donde H es la altura del árbol.

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *