Recorrido triangular en el sentido de las agujas del reloj de un árbol binario

Dado un árbol binario completo, la tarea es imprimir los elementos en el orden transversal en el sentido de las agujas del reloj.
El recorrido en el sentido de las agujas del reloj de un árbol se define como: 
 

Para el árbol binario anterior, el recorrido triangular en el sentido de las agujas del reloj será 
0, 2, 6, 14, 13, 12, 11, 10, 9, 8, 7, 3, 1, 5, 4 
 

Ejemplos:
 

Input:
          1
      /       \
     2         3
   /   \      /   \
  4     5    6    7
 / \    /\
8   9  10 11     
Output: 1, 3, 7, 11, 10, 9, 8, 4, 2, 6, 5

Input:
        1
      /   \
     2     3
Output: 1, 3, 2

Enfoque: 
Cree un vector tree[] donde tree[i] almacenará todos los Nodes del árbol en el nivel i . Tome un número entero k que realiza un seguimiento de qué nivel estamos atravesando otro número entero y el cicloen el que llevar un registro de cuántos ciclos se han completado. Ahora, comience a imprimir los Nodes, el Node restante más a la derecha que aún no se ha atravesado y siga moviéndose hacia abajo hasta que llegue al último nivel que no se ha atravesado ahora imprima este nivel de derecha a izquierda, luego mueva imprimir el elemento más a la izquierda restante de cada nivel comenzando desde el último nivel hasta el nivel superior cuyos elementos aún no se han recorrido, ahora nuevamente haga lo mismo hasta que no se hayan recorrido todos los elementos.
A continuación se muestra la implementación del enfoque anterior:
 

C++

// C++ program for the
// above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to create an
// edge between two vertices
void addEdge(int a, int b, vector<int> tree[])
{
 
    // Add a to b's list
    tree[a].push_back(b);
 
    // Add b to a's list
    tree[b].push_back(a);
}
 
// Function to create
// complete binary tree
void createTree(int n, vector<int> tree[])
{
    for (int i = 1;; i++) {
        // Adding edge to
        // a binary tree
        int c = 0;
        if (2 * i <= n) {
            addEdge(i, 2 * i, tree);
            c++;
        }
        if (2 * i + 1 <= n) {
            addEdge(i, 2 * i + 1, tree);
            c++;
        }
 
        if (c == 0)
            break;
    }
}
 
// Modified Breadth-First Function
void bfs(int node, vector<int> tree[], bool vis[],
         int level[], vector<int> nodes[], int& maxLevel)
{
 
    // Create a queue of
    // {child, parent}
    queue<pair<int, int> > qu;
 
    // Push root node in the front of
    // the queue and mark as visited
    qu.push({ node, 0 });
    nodes[0].push_back(node);
    vis[node] = true;
    level[1] = 0;
 
    while (!qu.empty()) {
 
        pair<int, int> p = qu.front();
 
        // Dequeue a vertex
        // from queue
        qu.pop();
        vis[p.first] = true;
 
        // Get all adjacent vertices of the dequeued
        // vertex s. If any adjacent has not
        // been visited then enqueue it
        for (int child : tree[p.first]) {
            if (!vis[child]) {
                qu.push({ child, p.first });
                level[child] = level[p.first] + 1;
                maxLevel = max(maxLevel, level[child]);
                nodes[level[child]].push_back(child);
            }
        }
    }
}
 
// Function to display the pattern
void display(vector<int> nodes[], int maxLevel)
{
 
    // k represents the level no.
    // cycle represents how many
    // cycles has been completed
    int k = 0, cycle = 0;
 
    // While there are nodes
    // left to traverse
    while (cycle - 1 <= maxLevel / 2) {
 
        // Traversing rightmost element
        // in each cycle as we move down
        while (k < maxLevel - cycle) {
            int j = nodes[k].size() - 1;
            cout << nodes[k][j - cycle] << " ";
            k++;
        }
 
        // Traversing each element of remaining
        // last level from right to left
        if (k == maxLevel - cycle) {
            int j = nodes[k].size() - 1;
            for (j -= cycle; j >= cycle; j--)
                cout << nodes[k][j] << " ";
        }
        k--;
 
        // Traversing leftmost remaining element
        // in each cycle as we move up
        while (k > cycle) {
            cout << nodes[k][cycle] << " ";
            k--;
        }
 
        // No of cycles
        // completed
        cycle++;
 
        // updating from which level to
        // start new cycle
        k = cycle + 1;
    }
}
 
// Driver code
int main()
{
 
    // Number of vertices
    int n = 12;
 
    const int sz = 1e5;
    int maxLevel = 0;
 
    vector<int> tree[sz + 1];
    bool vis[sz + 1];
    int level[sz + 1];
 
    vector<int> nodes[sz + 1];
 
    createTree(n, tree);
 
    bfs(1, tree, vis, level, nodes, maxLevel);
 
    display(nodes, maxLevel);
 
    return 0;
}

Python3

# Python3 program for the
# above approach
  
# Function to create an
# edge between two vertices
def addEdge(a, b):
  
    # Add a to b's list
    tree[a].append(b);
  
    # Add b to a's list
    tree[b].append(a); 
 
# Function to create
# complete binary tree
def createTree(n):
     
    i = 1   
    while True:
     
        # Adding edge to
        # a binary tree
        c = 0;
        if (2 * i <= n):
            addEdge(i, 2 * i);
            c += 1;
         
        if (2 * i + 1 <= n):
            addEdge(i, 2 * i + 1);
            c += 1       
  
        if (c == 0):
            break;
         
        i += 1   
 
# Modified Breadth-First
# Function
def bfs(node, maxLevel):
  
    # Create a queue of
    # {child, parent}
    qu = []
  
    # Push root node in the
    # front of the queue and
    # mark as visited
    qu.append([node, 0]);
    nodes[0].append(node);
    vis[node] = True;
    level[1] = 0;
  
    while (len(qu) != 0):       
        p = qu[0];
  
        # Dequeue a vertex
        # from queue
        qu.pop(0);
        vis[p[0]] = True;
  
        # Get all adjacent vertices
        # of the dequeued vertex s.
        # If any adjacent has not
        # been visited then enqueue it
        for child in tree[p[0]]:           
            if (not vis[child]):
                qu.append([child, p[0]]);
                level[child] = level[p[0]] + 1;
                maxLevel = max(maxLevel,
                               level[child]);
                nodes[level[child]].append(child);
                 
    return maxLevel
 
# Function to display
# the pattern
def display(maxLevel):
  
    # k represents the level no.
    # cycle represents how many
    # cycles has been completed
    k = 0
    cycle = 0;
  
    # While there are nodes
    # left to traverse
    while (cycle - 1 <= maxLevel // 2):
  
        # Traversing rightmost element
        # in each cycle as we move down
        while(k < maxLevel - cycle):
            j = len(nodes[k]) - 1;
            print(nodes[k][j - cycle],
                  end = ' ')
            k += 1
  
        # Traversing each element of
        # remaining last level from right
        # to left
        if (k == maxLevel - cycle):
            j = len(nodes[k]) - 1 - cycle;
            while(j >= cycle):               
                print(nodes[k][j],
                      end = ' ')
                j -= 1               
        k -= 1
  
        # Traversing leftmost remaining
        # element in each cycle as we
        # move up
        while (k > cycle):
            print(nodes[k][cycle],
                  end = ' ')
            k -= 1
  
        # No of cycles
        # completed
        cycle += 1
  
        # updating from which
        # level to start new cycle
        k = cycle + 1;   
 
# Driver code
if __name__=="__main__":
     
    # Number of vertices
    n = 12;
  
    sz = 100005;
    maxLevel = 0;   
    tree = [[] for i in range(sz + 1)]   
    vis = [False for i in range(sz + 1)]
    level = [0 for i in range(sz + 1)]
    nodes = [[] for i in range(sz + 1)]
    createTree(n);
    maxLevel = bfs(1, maxLevel);
    display(maxLevel);
 
# This code is contributed by Rutvik_56

Javascript

<script>
 
    // JavaScript program for the above approach
     
    let sz = 1e5;
    let tree = new Array(sz + 1);
    let nodes = new Array(sz + 1);
    let vis = new Array(sz + 1);
    let level = new Array(sz + 1);
     
    // Function to create an
    // edge between two vertices
    function addEdge(a, b)
    {
 
        // Add a to b's list
        tree[a].push(b);
 
        // Add b to a's list
        tree[b].push(a);
    }
 
    // Function to create
    // complete binary tree
    function createTree(n)
    {
        let i = 1;
        while(true) {
            // Adding edge to
            // a binary tree
            let c = 0;
            if (2 * i <= n) {
                addEdge(i, 2 * i);
                c++;
            }
            if (2 * i + 1 <= n) {
                addEdge(i, 2 * i + 1);
                c++;
            }
 
            if (c == 0)
                break;
              i+=1;
        }
    }
 
    // Modified Breadth-First Function
    function bfs(node, maxLevel)
    {
 
        // Create a queue of
        // {child, parent}
        let qu = [];
 
        // Push root node in the front of
        // the queue and mark as visited
        qu.push([ node, 0 ]);
        nodes[0].push(node);
        vis[node] = true;
        level[1] = 0;
 
        while (qu.length > 0)
        {
 
            let p = qu[0];
 
            // Dequeue a vertex
            // from queue
            qu.shift();
            vis[p[0]] = true;
 
            // Get all adjacent vertices of the dequeued
            // vertex s. If any adjacent has not
            // been visited then enqueue it
            for (let child = 0; child < tree[p[0]].length; child++) {
                if (!vis[tree[p[0]][child]]) {
                    qu.push([ tree[p[0]][child], p[0] ]);
                    level[tree[p[0]][child]] =
                    level[p[0]] + 1;
                     
                    maxLevel =
                    Math.max(maxLevel, level[tree[p[0]][child]]);
                     
                    nodes[level[tree[p[0]][child]]].
                    push(tree[p[0]][child]);
                }
            }
        }
        return maxLevel;
    }
 
    // Function to display the pattern
    function display(maxLevel)
    {
 
        // k represents the level no.
        // cycle represents how many
        // cycles has been completed
        let k = 0, cycle = 0;
 
        // While there are nodes
        // left to traverse
        while (cycle - 1 <= parseInt(maxLevel / 2, 10)) {
 
            // Traversing rightmost element
            // in each cycle as we move down
            while (k < maxLevel - cycle) {
                let j = nodes[k].length - 1;
                document.write(nodes[k][j - cycle] + " ");
                k++;
            }
 
            // Traversing each element of remaining
            // last level from right to left
            if (k == maxLevel - cycle) {
                let j = nodes[k].length - 1;
                for (j -= cycle; j >= cycle; j--)
                    document.write(nodes[k][j] + " ");
            }
            k--;
 
            // Traversing leftmost remaining element
            // in each cycle as we move up
            while (k > cycle) {
                document.write(nodes[k][cycle] + " ");
                k--;
            }
 
            // No of cycles
            // completed
            cycle++;
 
            // updating from which level to
            // start new cycle
            k = cycle + 1;
        }
    }
     
    // Number of vertices
    let n = 12;
     
    for(let i = 0; i < sz + 1; i++)
    {
        tree[i] = [];
        vis[i] = false;
        level[i] = 0;
        nodes[i] = [];
    }
     
    let maxLevel = 0;
  
    createTree(n);
  
    maxLevel = bfs(1, maxLevel);
  
    display(maxLevel);
 
</script>
Producción: 

1 3 7 12 11 10 9 8 4 2 6 5

 

Complejidad de tiempo: O(n)
 

Publicación traducida automáticamente

Artículo escrito por chsadik99 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *