Dado un gráfico no dirigido, la tarea es encontrar el tamaño de cada componente conectado e imprimir el número de tamaños únicos de los componentes conectados.
Como se muestra arriba, el conteo (tamaño del componente conectado) asociado con los componentes conectados es 2, 3 y 2. Ahora, el conteo único de los componentes es 2 y 3. Por lo tanto, el resultado esperado es Contar = 2
Ejemplos:
Input: N = 7
Output: 1 2 Count = 2 3 4 5 Count = 3 6 7 Count = 2 Unique Counts of connected components: 2 Input: N = 10
Output: 1 Count = 1 2 3 4 5 Count = 4 6 7 8 Count = 3 9 10 Count = 2 Unique Counts of connected components: 4
Requisitos previos: enfoque de búsqueda en profundidad primero : la idea básica es utilizar el método transversal de búsqueda en profundidad primero para realizar un seguimiento de los componentes conectados en el gráfico no dirigido. Un conjunto de contenedores STL se utiliza para almacenar los recuentos únicos de todos estos componentes, ya que se sabe que un conjunto tiene la propiedad de almacenar elementos únicos de manera ordenada. Finalmente, extraer el tamaño del Conjunto nos da el resultado necesario. La implementación paso a paso es la siguiente:
- Inicialice un contenedor hash (Set) para almacenar los recuentos únicos de los componentes conectados.
- Llame de forma recursiva al recorrido de primera búsqueda en profundidad.
- Por cada vértice visitado, almacene el conteo en el contenedor establecido.
- El tamaño final del Conjunto es el resultado requerido.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program to find unique count of // connected components #include <bits/stdc++.h> using namespace std; // Function to add edge in the graph void add_edge(int u, int v, vector<int> graph[]) { graph[u].push_back(v); graph[v].push_back(u); } // Function to traverse the undirected graph // using DFS algorithm and keep a track of // individual lengths of connected chains void depthFirst(int v, vector<int> graph[], vector<bool>& visited, int& ans) { // Marking the visited vertex as true visited[v] = true; cout << v << " "; // Incrementing the count of // connected chain length ans++; for (auto i : graph[v]) { if (visited[i] == false) { // Recursive call to the DFS algorithm depthFirst(i, graph, visited, ans); } } } // Function to initialize the graph // and display the result void UniqueConnectedComponent(int n, vector<int> graph[]) { // Initializing boolean visited array // to mark visited vertices vector<bool> visited(n + 1, false); // Initializing a Set container unordered_set<int> result; // Following loop invokes DFS algorithm for (int i = 1; i <= n; i++) { if (visited[i] == false) { // ans variable stores the // individual counts int ans = 0; // DFS algorithm depthFirst(i, graph, visited, ans); // Inserting the counts of connected // components in set result.insert(ans); cout << "Count = " << ans << "\n"; } } cout << "Unique Counts of " << "connected components: "; // The size of the Set container // gives the desired result cout << result.size() << "\n"; } // Driver code int main() { // Number of nodes int n = 7; // Create graph vector<int> graph[n + 1]; // Constructing the undirected graph add_edge(1, 2, graph); add_edge(3, 4, graph); add_edge(3, 5, graph); add_edge(6, 7, graph); // Function call UniqueConnectedComponent(n, graph); return 0; }
Java
// Java program to find // unique count of // connected components import java.util.*; class GFG{ // Function to add edge in the graph static void add_edge(int u, int v, Vector<Integer> graph[]) { graph[u].add(v); graph[v].add(u); } // Function to traverse the undirected graph // using DFS algorithm and keep a track of // individual lengths of connected chains static int depthFirst(int v, Vector<Integer> graph[], Vector<Boolean> visited, int ans) { // Marking the visited vertex as true visited.set(v, true); System.out.print(v + " "); // Incrementing the count of // connected chain length ans++; for (int i : graph[v]) { if (visited.get(i) == false) { // Recursive call to the DFS algorithm ans = depthFirst(i, graph, visited, ans); } } return ans; } // Function to initialize the graph // and display the result static void UniqueConnectedComponent(int n, Vector<Integer> graph[]) { // Initializing boolean visited array // to mark visited vertices Vector<Boolean> visited = new Vector<>(); for(int i = 0; i < n + 1; i++) visited.add(false); // Initializing a Set container HashSet<Integer> result = new HashSet<>(); // Following loop invokes DFS algorithm for (int i = 1; i <= n; i++) { if (visited.get(i) == false) { // ans variable stores the // individual counts int ans = 0; // DFS algorithm ans = depthFirst(i, graph, visited, ans); // Inserting the counts of connected // components in set result.add(ans); System.out.print("Count = " + ans + "\n"); } } System.out.print("Unique Counts of " + "connected components: "); // The size of the Set container // gives the desired result System.out.print(result.size() + "\n"); } // Driver code public static void main(String[] args) { // Number of nodes int n = 7; // Create graph @SuppressWarnings("unchecked") Vector<Integer>[] graph = new Vector[n+1]; for (int i = 0; i < graph.length; i++) graph[i] = new Vector<Integer>(); // Constructing the undirected graph add_edge(1, 2, graph); add_edge(3, 4, graph); add_edge(3, 5, graph); add_edge(6, 7, graph); // Function call UniqueConnectedComponent(n, graph); } }
Python3
# Python3 program to find unique count of # connected components graph = [[] for i in range(100 + 1)] visited = [False] * (100 + 1) ans = 0 # Function to add edge in the graph def add_edge(u, v): graph[u].append(v) graph[v].append(u) # Function to traverse the undirected graph # using DFS algorithm and keep a track of # individual lengths of connected chains def depthFirst(v): global ans # Marking the visited vertex as true visited[v] = True print(v, end = " ") #print(ans,end="-") # Incrementing the count of # connected chain length ans += 1 for i in graph[v]: if (visited[i] == False): # Recursive call to the # DFS algorithm depthFirst(i) # Function to initialize the graph # and display the result def UniqueConnectedComponent(n): global ans # Initializing boolean visited array # to mark visited vertices # Initializing a Set container result = {} # Following loop invokes DFS algorithm for i in range(1, n + 1): if (visited[i] == False): # ans variable stores the # individual counts # ans = 0 # DFS algorithm depthFirst(i) # Inserting the counts of connected # components in set result[ans] = 1 print("Count = ", ans) ans = 0 print("Unique Counts of connected " "components: ", end = "") # The size of the Set container # gives the desired result print(len(result)) # Driver code if __name__ == '__main__': # Number of nodes n = 7 # Create graph # Constructing the undirected graph add_edge(1, 2) add_edge(3, 4) add_edge(3, 5) add_edge(6, 7) # Function call UniqueConnectedComponent(n) # This code is contributed by mohit kumar 29
C#
// C# program to find // unique count of // connected components using System; using System.Collections.Generic; class GFG{ // Function to add edge in the graph static void add_edge(int u, int v, List<int> []graph) { graph[u].Add(v); graph[v].Add(u); } // Function to traverse the undirected graph // using DFS algorithm and keep a track of // individual lengths of connected chains static int depthFirst(int v, List<int> []graph, List<Boolean> visited, int ans) { // Marking the visited // vertex as true visited.Insert(v, true); Console.Write(v + " "); // Incrementing the count of // connected chain length ans++; foreach (int i in graph[v]) { if (visited[i] == false) { // Recursive call to // the DFS algorithm ans = depthFirst(i, graph, visited, ans); } } return ans; } // Function to initialize the graph // and display the result static void UniqueConnectedComponent(int n, List<int> []graph) { // Initializing bool visited array // to mark visited vertices List<Boolean> visited = new List<Boolean>(); for(int i = 0; i < n + 1; i++) visited.Add(false); // Initializing a Set container HashSet<int> result = new HashSet<int>(); // Following loop invokes DFS algorithm for (int i = 1; i <= n; i++) { if (visited[i] == false) { // ans variable stores the // individual counts int ans = 0; // DFS algorithm ans = depthFirst(i, graph, visited, ans); // Inserting the counts of connected // components in set result.Add(ans); Console.Write("Count = " + ans + "\n"); } } Console.Write("Unique Counts of " + "connected components: "); // The size of the Set container // gives the desired result Console.Write(result.Count + "\n"); } // Driver code public static void Main(String[] args) { // Number of nodes int n = 7; // Create graph List<int> []graph = new List<int>[n + 1]; for (int i = 0; i < graph.Length; i++) graph[i] = new List<int>(); // Constructing the undirected graph add_edge(1, 2, graph); add_edge(3, 4, graph); add_edge(3, 5, graph); add_edge(6, 7, graph); // Function call UniqueConnectedComponent(n, graph); } } // This code is contributed by shikhasingrajput
Javascript
<script> // Javascript program to find // unique count of // connected components // Function to add edge in the graph function add_edge(u,v,graph) { graph[u].push(v); graph[v].push(u); } // Function to traverse the undirected graph // using DFS algorithm and keep a track of // individual lengths of connected chains function depthFirst(v, graph,visited,ans) { // Marking the visited vertex as true visited[v] = true; document.write(v + " "); // Incrementing the count of // connected chain length ans++; for (let i=0;i< graph[v].length;i++) { if (visited[graph[v][i]] == false) { // Recursive call to the DFS algorithm ans = depthFirst(graph[v][i], graph, visited, ans); } } return ans; } // Function to initialize the graph // and display the result function UniqueConnectedComponent(n,graph) { // Initializing boolean visited array // to mark visited vertices let visited = []; for(let i = 0; i < n + 1; i++) visited.push(false); // Initializing a Set container let result = new Set(); // Following loop invokes DFS algorithm for (let i = 1; i <= n; i++) { if (visited[i] == false) { // ans variable stores the // individual counts let ans = 0; // DFS algorithm ans = depthFirst(i, graph, visited, ans); // Inserting the counts of connected // components in set result.add(ans); document.write("Count = " + ans + "<br>"); } } document.write("Unique Counts of " + "connected components: "); // The size of the Set container // gives the desired result document.write(result.size + "<br>"); } // Driver code // Number of nodes let n = 7; // Create graph let graph = new Array(n + 1); for (let i = 0; i < graph.length; i++) graph[i] = []; // Constructing the undirected graph add_edge(1, 2, graph); add_edge(3, 4, graph); add_edge(3, 5, graph); add_edge(6, 7, graph); // Function call UniqueConnectedComponent(n, graph); // This code is contributed by patel2127 </script>
1 2 Count = 2 3 4 5 Count = 3 6 7 Count = 2 Unique Counts of connected components: 2
Complejidad de tiempo:
como se desprende de la implementación anterior, el gráfico se recorre utilizando el algoritmo de búsqueda en profundidad primero. Los recuentos individuales se almacenan utilizando el contenedor Set en el que la operación de inserción tarda O (1) tiempo. La complejidad general se basa únicamente en el tiempo que tarda el algoritmo DFS en ejecutarse de forma recursiva. Por lo tanto, la complejidad temporal del programa es O(E + V) donde E es el número de aristas y V es el número de vértices del gráfico.
Espacio Auxiliar: O(N)
Publicación traducida automáticamente
Artículo escrito por PratikBasu y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA