Dadas dos arrays arr1[] y arr2[] con elementos distintos de tamaño N. La tarea es contar el número total de combinaciones posibles después de intercambiar elementos en el mismo índice de ambas arrays de modo que no haya duplicados en ambas arrays después realizando la operación.
Ejemplos:
Entrada: arr1[] = {1, 2, 3, 4}, arr2[] = {2, 1, 4, 3}, N = 4
Salida: 4
Explicación: Las posibles combinaciones de arrays son:
- {1, 2, 3, 4} y {2, 1, 4, 3}
- { 2 , 1 , 3, 4} y { 1 , 2 , 4, 3}
- {1, 2, 4 , 3 } y {2, 1, 3 , 4 }
- { 2 , 1 , 4 , 3 } y { 1 , 2 , 3 , 4 }
Los que están en negrita son elementos intercambiados. Entonces, número total de combinaciones = 4.
Entrada: arr1[] = {3, 6, 5, 2, 1, 4, 7}, arr2[] = {1, 7, 2, 4, 3, 5, 6}, N = 7
Salida: 8
Enfoque: la idea es iterar la array para cada elemento y hacer un intercambio , luego encontrar para el intercambio del elemento actual, cuántos intercambios adicionales se necesitan para que la array esté libre de duplicados . Cuente cada combinación diferente como un grupo (conjunto), es decir, para cada grupo hay dos posibilidades de hacer un intercambio o no hacer un intercambio, por lo que la respuesta será la suma de 2 elevada a la potencia del número de grupos . Siga los pasos a continuación para resolver el problema:
- Cree un mapa desordenado para almacenar elementos de ambas arrays en pares clave-valor
- Tome una variable digamos contar para el conteo de posibles combinaciones y también tome un vector para rastrear los elementos digamos visitados .
- Iterar sobre el mapa y verificar si el elemento no es visitado , cada vez crear un conjunto y ejecutar un bucle hasta que el índice actual no sea igual a i . En cada iteración, inserte el elemento del índice actual del mapa en el conjunto y también actualice el índice actual. Marque todos los elementos como visitados en el conjunto.
- Después de cada iteración, mientras hace grupos (conjunto), multiplique el conteo por 2 ya que hay dos posibilidades para cada grupo de intercambiar o no intercambiar elementos.
- Al final, devuelve la cuenta .
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation for the above approach #include <bits/stdc++.h> using namespace std; // Function to count possible combinations // of arrays after swapping of elements // such that there are no duplicates // in the arrays int possibleCombinations(int arr1[], int arr2[], int N) { // Create an unordered_map unordered_map<int, int> mp; // Traverse both the arrays and // store the elements of arr2[] // in arr1[] element index in // the map for (int i = 0; i < N; i++) { mp[arr1[i]] = arr2[i]; } // Take a variable for count of // possible combinations int count = 1; // Vector to keep track of already // swapped elements vector<bool> visited(N + 1, 0); for (int i = 1; i <= N; i++) { // If the element is not visited if (!visited[i]) { // Create a set set<int> s; // Variable to store the current index int curr_index = i; // Iterate a loop till curr_index // is equal to i do { // Insert the element in the set // of current index in map s.insert(mp[curr_index]); // Assign it to curr_index curr_index = mp[curr_index]; } while (curr_index != i); // Iterate over the set and // mark element as visited for (auto it : s) { visited[it] = 1; } count *= 2; } } return count; } // Driver Code int main() { int arr1[] = { 3, 6, 5, 2, 1, 4, 7 }; int arr2[] = { 1, 7, 2, 4, 3, 5, 6 }; int N = sizeof(arr1) / sizeof(arr1[0]); cout << possibleCombinations(arr1, arr2, N); return 0; }
Java
// Java implementation for the above approach import java.util.Arrays; import java.util.HashMap; import java.util.HashSet; class GFG { // Function to count possible combinations // of arrays after swapping of elements // such that there are no duplicates // in the arrays public static int possibleCombinations(int arr1[], int arr2[], int N) { // Create an unordered_map HashMap<Integer, Integer> mp = new HashMap<Integer, Integer>(); // Traverse both the arrays and // store the elements of arr2[] // in arr1[] element index in // the map for (int i = 0; i < N; i++) { mp.put(arr1[i], arr2[i]); } // Take a variable for count of // possible combinations int count = 1; // Vector to keep track of already // swapped elements int[] visited = new int[N + 1]; Arrays.fill(visited, 0); for (int i = 1; i <= N; i++) { // If the element is not visited if (visited[i] <= 0) { // Create a set HashSet<Integer> s = new HashSet<Integer>(); // Variable to store the current index int curr_index = i; // Iterate a loop till curr_index // is equal to i do { // Insert the element in the set // of current index in map s.add(mp.get(curr_index)); // Assign it to curr_index curr_index = mp.get(curr_index); } while (curr_index != i); // Iterate over the set and // mark element as visited for (int it : s) { visited[it] = 1; } count *= 2; } } return count; } // Driver Code public static void main(String args[]) { int arr1[] = { 3, 6, 5, 2, 1, 4, 7 }; int arr2[] = { 1, 7, 2, 4, 3, 5, 6 }; int N = arr1.length; System.out.println(possibleCombinations(arr1, arr2, N)); } } // This code is contributed by gfgking.
Python3
# Python3 implementation for the above approach # Function to count possible combinations # of arrays after swapping of elements # such that there are no duplicates # in the arrays def possibleCombinations(arr1, arr2, N) : # Create an unordered_map mp = {}; # Traverse both the arrays and # store the elements of arr2[] # in arr1[] element index in # the map for i in range(N) : mp[arr1[i]] = arr2[i]; # Take a variable for count of # possible combinations count = 1; # Vector to keep track of already # swapped elements visited = [0]*(N + 1); for i in range(1 , N + 1) : # If the element is not visited if (not visited[i]) : # Create a set s = set(); # Variable to store the current index curr_index = i; # Iterate a loop till curr_index # is equal to i while True : # Insert the element in the set # of current index in map s.add(mp[curr_index]); # Assign it to curr_index curr_index = mp[curr_index]; if (curr_index == i) : break # Iterate over the set and # mark element as visited for it in s : visited[it] = 1; count *= 2; return count; # Driver Code if __name__ == "__main__" : arr1 = [ 3, 6, 5, 2, 1, 4, 7 ]; arr2 = [ 1, 7, 2, 4, 3, 5, 6 ]; N = len(arr1); print(possibleCombinations(arr1, arr2, N)); # This code is contributed by AnkThon
C#
// C# implementation for the above approach using System; using System.Collections.Generic; class GFG { // Function to count possible combinations // of arrays after swapping of elements // such that there are no duplicates // in the arrays public static int possibleCombinations(int[] arr1, int[] arr2, int N) { // Create an unordered_map Dictionary<int, int> mp = new Dictionary<int, int>(); // Traverse both the arrays and // store the elements of arr2[] // in arr1[] element index in // the map for (int i = 0; i < N; i++) { mp[arr1[i]] = arr2[i]; } // Take a variable for count of // possible combinations int count = 1; // Vector to keep track of already // swapped elements int[] visited = new int[N + 1]; for (int i = 1; i <= N; i++) { // If the element is not visited if (visited[i] <= 0) { // Create a set HashSet<int> s = new HashSet<int>(); // Variable to store the current index int curr_index = i; // Iterate a loop till curr_index // is equal to i do { // Insert the element in the set // of current index in map s.Add(mp[curr_index]); // Assign it to curr_index curr_index = mp[curr_index]; } while (curr_index != i); // Iterate over the set and // mark element as visited foreach(int it in s) { visited[it] = 1; } count *= 2; } } return count; } // Driver Code public static void Main(string[] args) { int[] arr1 = { 3, 6, 5, 2, 1, 4, 7 }; int[] arr2 = { 1, 7, 2, 4, 3, 5, 6 }; int N = arr1.Length; Console.WriteLine( possibleCombinations(arr1, arr2, N)); } } // This code is contributed by ukasp.
Javascript
<script> // Javascript implementation for the above approach // Function to count possible combinations // of arrays after swapping of elements // such that there are no duplicates // in the arrays function possibleCombinations(arr1, arr2, N) { // Create an unordered_map var mp = new Map(); // Traverse both the arrays and // store the elements of arr2[] // in arr1[] element index in // the map for (var i = 0; i < N; i++) { mp.set(arr1[i], arr2[i]); } // Take a variable for count of // possible combinations var count = 1; // Vector to keep track of already // swapped elements var visited = Array(N + 1).fill(false); for (var i = 1; i <= N; i++) { // If the element is not visited if (!visited[i]) { // Create a set var s = new Set(); // Variable to store the current index var curr_index = i; // Iterate a loop till curr_index // is equal to i do { // Insert the element in the set // of current index in map s.add(mp.get(curr_index)); // Assign it to curr_index curr_index = mp.get(curr_index); } while (curr_index != i); // Iterate over the set and // mark element as visited for (var it of [...s]) { visited[it] = true; } count *= 2; } } return count; } // Driver Code var arr1 = [3, 6, 5, 2, 1, 4, 7]; var arr2 = [1, 7, 2, 4, 3, 5, 6]; var N = arr1.length; document.write(possibleCombinations(arr1, arr2, N)); // This code is contributed by rutvik_56. </script>
8
Complejidad de Tiempo : O(N 2 )
Espacio Auxiliar : O(N)