Recuento de rotaciones necesarias para generar una array ordenada

Dada una array arr[] , la tarea es encontrar el número de rotaciones requeridas para convertir la array dada a una forma ordenada.
Ejemplos:

Entrada: arr[] = {4, 5, 1, 2, 3} 
Salida:
Explicación: 
array ordenada {1, 2, 3, 4, 5} después de 2 rotaciones en sentido contrario a las agujas del reloj.

Entrada: arr[] = {2, 1, 2, 2, 2} 
Salida:
Explicación: 
array ordenada {1, 2, 2, 2, 2} después de 1 rotación en sentido contrario a las agujas del reloj.

Enfoque ingenuo:
para resolver el problema mencionado anteriormente, la primera observación es que si tenemos n elementos en la array, luego de ordenar, el elemento más grande está en (n – 1) la posición th . Después de k número de rotaciones en sentido contrario a las agujas del reloj, el elemento más grande estará en el índice (k – 1) (k -ésimo elemento desde el inicio). Otra cosa a tener en cuenta aquí es que, después de la rotación, el siguiente elemento del elemento más grande siempre será el elemento más pequeño (a menos que el elemento más grande esté en el último índice, posible si no hubo rotación). 
Por eso,

Número de rotaciones (k) = índice del elemento más pequeño (k) en la array

A continuación se muestra la implementación del enfoque anterior:

C++

// C++ program to find the
// count of rotations
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count
// of rotations
int countRotation(int arr[], int n)
{
    for(int i = 1; i < n; i++)
    {
         
       // Find the smallest element
       if (arr[i] < arr[i - 1])
       {
           // Return its index
           return i;
       }
    }
     
    // If array is not
    // rotated at all
    return 0;
}
 
// Driver Code
int main()
{
    int arr1[] = { 4, 5, 1, 2, 3 };
    int n = sizeof(arr1) / sizeof(int);
     
    cout << countRotation(arr1, n);
}
 
// This code is contributed by jrishabh99

Java

// Java Program to find the
// count of rotations
public class GFG {
 
    // Function to return the count of
    // rotations
    public static int countRotation(int[] arr,
                                    int n)
    {
        for (int i = 1; i < n; i++) {
            // Find the smallest element
            if (arr[i] < arr[i - 1]) {
                // Return its index
                return i;
            }
        }
        // If array is not
        // rotated at all
        return 0;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int[] arr1 = { 4, 5, 1, 2, 3 };
 
        System.out.println(
            countRotation(
                arr1,
                arr1.length));
    }
}

Python3

# Python3 program to find the
# count of rotations
 
# Function to return the count
# of rotations
def countRotation(arr, n):
     
    for i in range (1, n):
         
        # Find the smallest element
        if (arr[i] < arr[i - 1]):
             
            # Return its index
            return i
     
    # If array is not
    # rotated at all
    return 0
 
# Driver Code
if __name__ == "__main__":
     
    arr1 = [ 4, 5, 1, 2, 3 ]
    n = len(arr1)
     
    print(countRotation(arr1, n))
 
# This code is contributed by chitranayal

C#

// C# program to find the count of rotations
using System;
class GFG{
 
// Function to return the count of
// rotations
public static int countRotation(int[] arr,
                                int n)
{
    for(int i = 1; i < n; i++)
    {
         
    // Find the smallest element
    if (arr[i] < arr[i - 1])
    {
             
        // Return its index
        return i;
    }
    }
     
    // If array is not
    // rotated at all
    return 0;
}
 
// Driver Code
public static void Main(String[] args)
{
    int[] arr1 = { 4, 5, 1, 2, 3 };
 
    Console.WriteLine(countRotation(arr1,
                                    arr1.Length));
}
}
 
// This code is contributed by gauravrajput1

Javascript

<script>
 
// JavaScript program to find the
// count of rotations
 
// Function to return the count of
// rotations
function countRotation(arr, n)
{
    for(let i = 1; i < n; i++)
    {
         
        // Find the smallest element
        if (arr[i] < arr[i - 1])
        {
             
            // Return its index
            return i;
        }
    }
     
    // If array is not
    // rotated at all
    return 0;
}
 
// Driver Code
let arr1 = [ 4, 5, 1, 2, 3 ];
 
document.write(countRotation(
    arr1, arr1.length));
     
// This code is contributed by sanjoy_62
 
</script>
Producción: 

2

 

Complejidad de Tiempo: O(N) 
Espacio Auxiliar: O(1), ya que no se ha tomado espacio extra.

Enfoque eficiente: 
para optimizar el enfoque anterior, utilizaremos la búsqueda binaria . Podemos notar que, después de ordenar y rotar, la array dada se divide en dos mitades con elementos no decrecientes, que es el único requisito previo para la búsqueda binaria. Realice una búsqueda binaria recursiva en la array para encontrar el índice del elemento más pequeño.

A continuación se muestra la implementación del enfoque anterior:

C++

// C++ program to implement the
// above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the
// count of rotations
int countRotation(int arr[], int low,
                             int high)
{
     
    // If array is not rotated
    if (low > high)
    {
        return 0;
    }
 
    int mid = low + (high - low) / 2;
 
    // Check if current element is
    // greater than the next
    // element
    if (mid < high && arr[mid] > arr[mid + 1])
    {
         
        // The next element is
        // the smallest
        return mid + 1;
    }
 
    // Check if current element is
    // smaller than it's previous
    // element
    if (mid > low && arr[mid] < arr[mid - 1])
    {
         
        // Current element is
        // the smallest
        return mid;
    }
 
    // Check if current element is
    // greater than lower bound
    if (arr[mid] > arr[low])
    {
         
        // The sequence is increasing
        // so far
        // Search for smallest
        // element on the right
        // subarray
        return countRotation(arr, mid + 1,
                             high);
    }
 
    if (arr[mid] < arr[high])
    {
         
        // Smallest element lies on the
        // left subarray
        return countRotation(arr, low,
                             mid - 1);
    }
    else
    {
         
        // Search for the smallest
        // element on both subarrays
        int rightIndex = countRotation(arr,
                                       mid + 1,
                                       high);
        int leftIndex = countRotation(arr, low,
                                      mid - 1);
        if (rightIndex == 0)
        {
            return leftIndex;
        }
        return rightIndex;
    }
}
 
// Driver code   
int main()
{
    int arr1[] = { 4, 5, 1, 2, 3 };
    int N = sizeof(arr1) / sizeof(arr1[0]);
     
    cout << countRotation(arr1, 0, N - 1);
     
    return 0;
}
 
// This code is contributed by divyeshrabadiya07

Java

// Java Program to implement
// the above approach
 
public class GFG {
 
    // Function to return the
    // count of rotations
    public static int countRotation(int[] arr,
                                    int low,
                                    int high)
    {
        // If array is not rotated
        if (low > high) {
            return 0;
        }
 
        int mid = low + (high - low) / 2;
 
        // Check if current element is
        // greater than the next
        // element
 
        if (mid < high
            && arr[mid] > arr[mid + 1]) {
            // the next element is
            // the smallest
            return mid + 1;
        }
 
        // Check if current element is
        // smaller than it's previous
        // element
        if (mid > low
            && arr[mid] < arr[mid - 1]) {
            // Current element is
            // the smallest
            return mid;
        }
 
        // Check if current element is
        // greater than lower bound
 
        if (arr[mid] > arr[low]) {
            // The sequence is increasing
            // so far
            // Search for smallest
            // element on the right
            // subarray
            return countRotation(arr,
                                mid + 1,
                                high);
        }
 
        if (arr[mid] < arr[high]) {
            // Smallest element lies on the
            // left subarray
            return countRotation(arr,
                                low,
                                mid - 1);
        }
 
        else {
            // Search for the smallest
            // element on both subarrays
            int rightIndex = countRotation(arr,
                                        mid + 1,
                                        high);
            int leftIndex = countRotation(arr,
                                        low,
                                        mid - 1);
 
            if (rightIndex == 0) {
                return leftIndex;
            }
 
            return rightIndex;
        }
    }
 
    // Driver Program
    public static void main(String[] args)
    {
        int[] arr1 = { 4, 5, 1, 2, 3 };
 
        System.out.println(
            countRotation(
                arr1,
                0, arr1.length
                    - 1));
    }
}

Python3

# Python3 program to implement the
# above approach
 
# Function to return the
# count of rotations
def countRotation(arr, low, high):
 
    # If array is not rotated
    if (low > high):
        return 0
 
    mid = low + (high - low) // 2
 
    # Check if current element is
    # greater than the next
    # element
    if (mid < high and arr[mid] > arr[mid + 1]):
 
        # The next element is
        # the smallest
        return mid + 1
 
    # Check if current element is
    # smaller than it's previous
    # element
    if (mid > low and arr[mid] < arr[mid - 1]):
 
        # Current element is
        # the smallest
        return mid
 
    # Check if current element is
    # greater than lower bound
    if (arr[mid] > arr[low]):
 
        # The sequence is increasing
        # so far
        # Search for smallest
        # element on the right
        # subarray
        return countRotation(arr, mid + 1, high)
 
    if (arr[mid] < arr[high]):
 
        # Smallest element lies on the
        # left subarray
        return countRotation(arr, low, mid - 1)
 
    else:
 
        # Search for the smallest
        # element on both subarrays
        rightIndex = countRotation(arr,
                                   mid + 1,
                                   high)
        leftIndex = countRotation(arr, low,
                                  mid - 1)
         
        if (rightIndex == 0):
            return leftIndex
 
        return rightIndex
 
# Driver code
if __name__ == '__main__':
     
    arr1 = [ 4, 5, 1, 2, 3 ]
    N = len(arr1)
 
    print(countRotation(arr1, 0, N - 1))
 
# This code is contributed by mohit kumar 29

C#

// C# program to implement
// the above approach
using System;
 
class GFG{
 
// Function to return the
// count of rotations
public static int countRotation(int[] arr,
                                int low,
                                int high)
{
 
    // If array is not rotated
    if (low > high)
    {
        return 0;
    }
 
    int mid = low + (high - low) / 2;
 
    // Check if current element is
    // greater than the next
    // element
    if (mid < high &&
        arr[mid] > arr[mid + 1])
    {
         
        // The next element is
        // the smallest
        return mid + 1;
    }
 
    // Check if current element is
    // smaller than it's previous
    // element
    if (mid > low &&
        arr[mid] < arr[mid - 1])
    {
         
        // Current element is
        // the smallest
        return mid;
    }
 
    // Check if current element is
    // greater than lower bound
    if (arr[mid] > arr[low])
    {
         
        // The sequence is increasing
        // so far
        // Search for smallest
        // element on the right
        // subarray
        return countRotation(arr,
                             mid + 1,
                             high);
    }
 
    if (arr[mid] < arr[high])
    {
         
        // Smallest element lies on the
        // left subarray
        return countRotation(arr, low,
                             mid - 1);
    }
     
    else
    {
         
        // Search for the smallest
        // element on both subarrays
        int rightIndex = countRotation(arr,
                                       mid + 1,
                                       high);
        int leftIndex = countRotation(arr, low,
                                      mid - 1);
 
        if (rightIndex == 0)
        {
            return leftIndex;
        }
        return rightIndex;
    }
}
 
// Driver code
public static void Main(String[] args)
{
    int[] arr1 = { 4, 5, 1, 2, 3 };
 
    Console.WriteLine(countRotation(arr1, 0,
                            arr1.Length - 1));
}
}
 
// This code is contributed by 29AjayKumar

Javascript

<script>
// Javascript Program to implement
// the above approach
  
 
// Function to return the
    // count of rotations
function countRotation(arr,low,high)
{
 
    // If array is not rotated
        if (low > high) {
            return 0;
        }
  
        let mid = low + Math.floor((high - low) / 2);
  
        // Check if current element is
        // greater than the next
        // element
  
        if (mid < high
            && arr[mid] > arr[mid + 1]) {
            // the next element is
            // the smallest
            return mid + 1;
        }
  
        // Check if current element is
        // smaller than it's previous
        // element
        if (mid > low
            && arr[mid] < arr[mid - 1]) {
            // Current element is
            // the smallest
            return mid;
        }
  
        // Check if current element is
        // greater than lower bound
  
        if (arr[mid] > arr[low]) {
            // The sequence is increasing
            // so far
            // Search for smallest
            // element on the right
            // subarray
            return countRotation(arr,
                                mid + 1,
                                high);
        }
  
        if (arr[mid] < arr[high])
        {
         
            // Smallest element lies on the
            // left subarray
            return countRotation(arr,
                                low,
                                mid - 1);
        }
  
        else
        {
         
            // Search for the smallest
            // element on both subarrays
            let rightIndex = countRotation(arr,
                                        mid + 1,
                                        high);
            let leftIndex = countRotation(arr,
                                        low,
                                        mid - 1);
  
            if (rightIndex == 0) {
                return leftIndex;
            }
  
            return rightIndex;
        }
}
 
 // Driver Program
let arr1=[4, 5, 1, 2, 3 ];
document.write(
            countRotation(
                arr1,
                0, arr1.length
                    - 1));
 
// This code is contributed by avanitrachhadiya2155
</script>
Producción: 

2

 

Complejidad de tiempo: O(N) 
La complejidad será O(logN) para una array sin duplicados. Pero si la array contiene duplicados, llamará recursivamente a la búsqueda de ambas mitades. Entonces, la complejidad del peor de los casos será O (N).

Espacio auxiliar: O(N) 
En el peor de los casos, la pila de llamadas recursivas tendrá N/2 llamadas recursivas a la vez.
 

Publicación traducida automáticamente

Artículo escrito por jigyansu y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *