Regla trapezoidal para valor aproximado de integral definida

En el campo del análisis numérico, la regla trapezoidal se usa para encontrar la aproximación de una integral definida. La idea básica de la regla trapezoidal es suponer que la región bajo la gráfica de la función dada es un trapezoide y calcular su área. 
De ello se deduce que:
{\displaystyle \int _{a}^{b}f(x)\,dx\approx (b-a)\left[{\frac {f(a)+f(b)}{2}}\right]}
Para obtener resultados más precisos, el dominio del gráfico se divide en n segmentos de igual tamaño, como se muestra a continuación: 
 

trapezoidalrule2

Espaciamiento de cuadrícula o tamaño de segmento h = (ba) / n. 
Por lo tanto, el valor aproximado de la integral puede estar dado por: 
\int_{a}^{b}f(x)dx=\frac{b-a}{2n}\left [ f(a)+2\left \{ \sum_{i=1}^{n-1}f(a+ih) \right \}+f(b) \right ]

C++

// C++ program to implement Trapezoidal rule
#include<stdio.h>
 
// A sample function whose definite integral's
// approximate value is computed using Trapezoidal
// rule
float y(float x)
{
    // Declaring the function f(x) = 1/(1+x*x)
    return 1/(1+x*x);
}
 
// Function to evaluate the value of integral
float trapezoidal(float a, float b, float n)
{
    // Grid spacing
    float h = (b-a)/n;
 
    // Computing sum of first and last terms
    // in above formula
    float s = y(a)+y(b);
 
    // Adding middle terms in above formula
    for (int i = 1; i < n; i++)
        s += 2*y(a+i*h);
 
    // h/2 indicates (b-a)/2n. Multiplying h/2
    // with s.
    return (h/2)*s;
}
 
// Driver program to test above function
int main()
{
    // Range of definite integral
    float x0 = 0;
    float xn = 1;
 
    // Number of grids. Higher value means
    // more accuracy
    int n = 6;
 
    printf("Value of integral is %6.4f\n",
                  trapezoidal(x0, xn, n));
    return 0;
}

Java

// Java program to implement Trapezoidal rule
 
class GFG
{
    // A sample function whose definite
    // integral's approximate value 
    // is computed using Trapezoidal
    // rule
    static float y(float x)
    {
        // Declaring the function
        // f(x) = 1/(1+x*x)
        return 1 / (1 + x * x);
    }
     
    // Function to evaluate the value of integral
    static float trapezoidal(float a, float b, float n)
    {
        // Grid spacing
        float h = (b - a) / n;
     
        // Computing sum of first and last terms
        // in above formula
        float s = y(a) + y(b);
     
        // Adding middle terms in above formula
        for (int i = 1; i < n; i++)
            s += 2 * y( a + i * h);
     
        // h/2 indicates (b-a)/2n. Multiplying h/2
        // with s.
        return (h / 2) * s;
    }
     
    // Driver code
    public static void main (String[] args)
    {
        // Range of definite integral
        float x0 = 0;
        float xn = 1;
     
        // Number of grids. Higher
        // value means more accuracy
        int n = 6;
     
        System.out.println("Value of integral is "+
                           Math.round(trapezoidal(x0, xn, n)
                           * 10000.0) / 10000.0);
    }
}
 
// This code is contributed by Anant Agarwal.

Python3

# Python3 code to implement Trapezoidal rule
 
# A sample function whose definite
# integral's approximate value is
# computed using Trapezoidal rule
def y( x ):
     
    # Declaring the function
    # f(x) = 1/(1+x*x)
    return (1 / (1 + x * x))
     
# Function to evaluate the value of integral
def trapezoidal (a, b, n):
     
    # Grid spacing
    h = (b - a) / n
     
    # Computing sum of first and last terms
    # in above formula
    s = (y(a) + y(b))
 
    # Adding middle terms in above formula
    i = 1
    while i < n:
        s += 2 * y(a + i * h)
        i += 1
         
    # h/2 indicates (b-a)/2n.
    # Multiplying h/2 with s.
    return ((h / 2) * s)
 
# Driver code to test above function
# Range of definite integral
x0 = 0
xn = 1
 
# Number of grids. Higher value means
# more accuracy
n = 6
print ("Value of integral is ",
     "%.4f"%trapezoidal(x0, xn, n))
 
 
# This code is contributed by "Sharad_Bhardwaj".

C#

// C# program to implement Trapezoidal
// rule.
using System;
 
class GFG {
     
    // A sample function whose definite
    // integral's approximate value
    // is computed using Trapezoidal
    // rule
    static float y(float x)
    {
         
        // Declaring the function
        // f(x) = 1/(1+x*x)
        return 1 / (1 + x * x);
    }
     
    // Function to evaluate the value
    // of integral
    static float trapezoidal(float a,
                       float b, float n)
    {
         
        // Grid spacing
        float h = (b - a) / n;
     
        // Computing sum of first and
        // last terms in above formula
        float s = y(a) + y(b);
     
        // Adding middle terms in above
        // formula
        for (int i = 1; i < n; i++)
            s += 2 * y( a + i * h);
     
        // h/2 indicates (b-a)/2n.
        // Multiplying h/2 with s.
        return (h / 2) * s;
    }
     
    // Driver code
    public static void Main ()
    {
         
        // Range of definite integral
        float x0 = 0;
        float xn = 1;
     
        // Number of grids. Higher
        // value means more accuracy
        int n = 6;
     
        Console.Write("Value of integral is "
          + Math.Round(trapezoidal(x0, xn, n)
                        * 10000.0) / 10000.0);
    }
}
 
// This code is contributed by nitin mittal.

PHP

<?php
// PHP program to implement Trapezoidal rule
 
// A sample function whose definite
// integral's approximate value is
// computed using Trapezoidal rule
function y($x)
{
     
    // Declaring the function
    // f(x) = 1/(1+x*x)
    return 1 / (1 + $x * $x);
}
 
// Function to evaluate the
// value of integral
function trapezoidal($a, $b, $n)
{
     
    // Grid spacing
    $h = ($b - $a) / $n;
 
    // Computing sum of first
    // and last terms
    // in above formula
    $s = y($a) + y($b);
 
    // Adding middle terms
    // in above formula
    for ($i = 1; $i < $n; $i++)
        $s += 2 * Y($a + $i * $h);
 
    // h/2 indicates (b-a)/2n.
    // Multiplying h/2 with s.
    return ($h / 2) * $s;
}
 
    // Driver Code
    // Range of definite integral
    $x0 = 0;
    $xn = 1;
 
    // Number of grids.
    // Higher value means
    // more accuracy
    $n = 6;
 
    echo("Value of integral is ");
    echo(trapezoidal($x0, $xn, $n));
     
// This code is contributed by nitin mittal
?>

Javascript

<script>
 
// Javascript program to implement Trapezoidal rule
 
// A sample function whose definite
// integral's approximate value 
// is computed using Trapezoidal
// rule
function y(x)
{
     
    // Declaring the function
    // f(x) = 1/(1+x*x)
    return 1 / (1 + x * x);
}
   
// Function to evaluate the value of integral
function trapezoidal(a, b, n)
{
     
    // Grid spacing
    let h = (b - a) / n;
   
    // Computing sum of first and last terms
    // in above formula
    let s = y(a) + y(b);
   
    // Adding middle terms in above formula
    for(let i = 1; i < n; i++)
        s += 2 * y(a + i * h);
   
    // h/2 indicates (b-a)/2n. Multiplying h/2
    // with s.
    return (h / 2) * s;
}
 
// Driver code
 
// Range of definite integral
let x0 = 0;
let xn = 1;
 
// Number of grids. Higher
// value means more accuracy
let n = 6;
 
document.write("Value of integral is "+
               Math.round(trapezoidal(x0, xn, n) *
               10000.0) / 10000.0);
                        
// This code is contributed by code_hunt
     
</script>

Producción: 

Value of integral is 0.7842

Referencias:  
https://en.wikipedia.org/wiki/Trapezoidal_rule

Este artículo es una contribución de Harsh Agarwal . Si te gusta GeeksforGeeks y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks.
Escriba comentarios si encuentra algo incorrecto o si desea compartir más información sobre el tema tratado anteriormente.
 

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *