Dada una entrada binaria que represente la representación binaria del número positivo n, encuentre la representación binaria de n-1. Se puede suponer que el número binario de entrada es mayor que 0.
La entrada binaria puede encajar o no incluso en int largo largo sin signo.
Ejemplos:
Input : 10110 Output : 10101 Here n = (22)10 = (10110)2 Previous number = (21)10 = (10101)2 Input : 11000011111000000 Output : 11000011110111111
Almacenamos la entrada como una string para que se puedan manejar grandes números. Recorremos la string desde el carácter más a la derecha y convertimos todos los 0 en 1 hasta que encontramos un 1. Finalmente, convertimos el 1 encontrado en 0. El número así formado después de este proceso es el número requerido. Si la entrada es «1», entonces el número anterior será «0». Si solo el primer carácter de toda la string es ‘1’, descartamos este carácter y cambiamos todos los 0 por 1.
Implementación:
C++
// C++ implementation to find the binary // representation of previous number #include <bits/stdc++.h> using namespace std; // function to find the required // binary representation string previousNumber(string num) { int n = num.size(); // if the number is '1' if (num.compare("1") == 0) return "0"; // examine bits from right to left int i; for (i = n - 1; i >= 0; i--) { // if '1' is encountered, convert // it to '0' and then break if (num.at(i) == '1') { num.at(i) = '0'; break; } // else convert '0' to '1' else num.at(i) = '1'; } // if only the 1st bit in the // binary representation was '1' if (i == 0) return num.substr(1, n - 1); // final binary representation // of the required number return num; } // Driver program to test above int main() { string num = "10110"; cout << "Binary representation of previous number = " << previousNumber(num); return 0; }
Java
// Java implementation to find the binary // representation of previous number class GFG { // function to find the required // binary representation static String previousNumber(String num) { int n = num.length(); // if the number is '1' if (num.compareTo("1") == 0) { return "0"; } // examine bits from right to left int i; for (i = n - 1; i >= 0; i--) { // if '1' is encountered, convert // it to '0' and then break if (num.charAt(i) == '1') { num = num.substring(0, i) + '0' + num.substring(i + 1); // num.charAt(i) = '0'; break; } // else convert '0' to '1' else { num = num.substring(0, i) + '1' + num.substring(i + 1); } //num.at(i) = '1'; } // if only the 1st bit in the // binary representation was '1' if (i == 0) { return num.substring(1, n - 1); } // final binary representation // of the required number return num; } // Driver code public static void main(String[] args) { String num = "10110"; System.out.print("Binary representation of previous number = " + previousNumber(num)); } } /* This code contributed by PrinciRaj1992 */
Python3
# Python3 implementation to find the binary # representation of previous number # function to find the required # binary representation def previousNumber(num1): n = len(num1); num = list(num1); # if the number is '1' if (num1 == "1"): return "0"; i = n - 1; # examine bits from right to left while (i >= 0): # if '1' is encountered, convert # it to '0' and then break if (num[i] == '1'): num[i] = '0'; break; # else convert '0' to '1' else: num[i] = '1'; i -= 1; # if only the 1st bit in the # binary representation was '1' if (i == 0): return num[1:n]; # final binary representation # of the required number return '' . join(num); # Driver code num = "10110"; print("Binary representation of previous number =", previousNumber(num)); # This code is contributed by mits
C#
// C# implementation to find the binary // representation of previous number using System; class GFG { // function to find the required // binary representation static String previousNumber(String num) { int n = num.Length; // if the number is '1' if (num.CompareTo("1") == 0) { return "0"; } // examine bits from right to left int i; for (i = n - 1; i >= 0; i--) { // if '1' is encountered, convert // it to '0' and then break if (num[i] == '1') { num = num.Substring(0, i) + '0' + num.Substring(i + 1); // num.charAt(i) = '0'; break; } // else convert '0' to '1' else { num = num.Substring(0, i) + '1' + num.Substring(i + 1); } //num.at(i) = '1'; } // if only the 1st bit in the // binary representation was '1' if (i == 0) { return num.Substring(1, n - 1); } // final binary representation // of the required number return num; } // Driver code public static void Main(String[] args) { String num = "10110"; Console.Write("Binary representation of previous number = " + previousNumber(num)); } } // This code contributed by Rajput-Ji
PHP
<?php // PHP implementation to find the binary // representation of previous number // function to find the required // binary representation function previousNumber($num) { $n = strlen($num); // if the number is '1' if ($num == "1") return "0"; $i = $n - 1; // examine bits from right to left for (; $i >= 0; $i--) { // if '1' is encountered, convert // it to '0' and then break if ($num[$i] == '1') { $num[$i] = '0'; break; } // else convert '0' to '1' else $num[$i] = '1'; } // if only the 1st bit in the // binary representation was '1' if ($i == 0) return substr($num,1, $n - 1); // final binary representation // of the required number return $num; } // Driver code $num = "10110"; echo "Binary representation of previous number = ".previousNumber($num); // This code is contributed by mits ?>
Javascript
<script> // Javascript implementation to find the binary // representation of previous number // function to find the required // binary representation function previousNumber(num) { var n = num.length; // if the number is '1' if (num == "1") return "0"; // examine bits from right to left var i; for (i = n - 1; i >= 0; i--) { // if '1' is encountered, convert // it to '0' and then break if (num[i] == '1') { num[i] = '0'; break; } // else convert '0' to '1' else num[i] = '1'; } // if only the 1st bit in the // binary representation was '1' if (i == 0) return num.substring(1, n); // final binary representation // of the required number return num.join(''); } // Driver program to test above var num = "10110".split(''); document.write( "Binary representation of previous number = " + previousNumber(num)); // This code is contributed by rrrtnx. </script>
Binary representation of previous number = 10101
Complejidad de tiempo: O (n) donde n es el número de bits en la entrada.
Este artículo es una contribución de Ayush Jauhari . Si te gusta GeeksforGeeks y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA