Al igual que Binary Search , Jump Search es un algoritmo de búsqueda de arrays ordenadas. La idea básica es comprobar menos elementos (que la búsqueda lineal ) avanzando en pasos fijos o omitiendo algunos elementos en lugar de buscar todos los elementos.
Por ejemplo, supongamos que tenemos una array arr[] de tamaño n y un bloque (a saltar) de tamaño m. Luego buscamos en los índices arr[0], arr[m], arr[2m]…..arr[km] y así sucesivamente. Una vez que encontramos el intervalo (arr[km] < x < arr[(k+1)m]), realizamos una operación de búsqueda lineal desde el índice km para encontrar el elemento x.
Consideremos la siguiente array: (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610). La longitud de la array es 16. La búsqueda de salto encontrará el valor de 55 con los siguientes pasos, suponiendo que el tamaño del bloque que se saltará es 4.
PASO 1: salte del índice 0 al índice 4;
PASO 2: Saltar del índice 4 al índice 8;
PASO 3: Saltar del índice 8 al índice 12;
PASO 4: Dado que el elemento en el índice 12 es mayor que 55, retrocederemos un paso para llegar al índice 8.
PASO 5: Realice una búsqueda lineal desde el índice 8 para obtener el elemento 55.
Rendimiento en comparación con la búsqueda lineal y binaria:
Si lo comparamos con la búsqueda lineal y binaria, resulta que es mejor que la búsqueda lineal pero no mejor que la búsqueda binaria.
C++
// C++ program to implement Jump Search #include <bits/stdc++.h> using namespace std; int jumpSearch(int arr[], int x, int n) { // Finding block size to be jumped int step = sqrt(n); // Finding the block where element is // present (if it is present) int prev = 0; while (arr[min(step, n)-1] < x) { prev = step; step += sqrt(n); if (prev >= n) return -1; } // Doing a linear search for x in block // beginning with prev. while (arr[prev] < x) { prev++; // If we reached next block or end of // array, element is not present. if (prev == min(step, n)) return -1; } // If element is found if (arr[prev] == x) return prev; return -1; } // Driver program to test function int main() { int arr[] = { 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610 }; int x = 55; int n = sizeof(arr) / sizeof(arr[0]); // Find the index of 'x' using Jump Search int index = jumpSearch(arr, x, n); // Print the index where 'x' is located cout << "\nNumber " << x << " is at index " << index; return 0; } // Contributed by nuclode
C
#include<stdio.h> #include<math.h> int min(int a, int b){ if(b>a) return a; else return b; } int jumpsearch(int arr[], int x, int n) { // Finding block size to be jumped int step = sqrt(n); // Finding the block where element is // present (if it is present) int prev = 0; while (arr[min(step, n)-1] < x) { prev = step; step += sqrt(n); if (prev >= n) return -1; } // Doing a linear search for x in block // beginning with prev. while (arr[prev] < x) { prev++; // If we reached next block or end of // array, element is not present. if (prev == min(step, n)) return -1; } // If element is found if (arr[prev] == x) return prev; return -1; } int main() { int arr[] = { 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610}; int x = 55; int n = sizeof(arr)/sizeof(arr[0]); int index = jumpsearch(arr, x, n); if(index >= 0) printf("Number is at %d index",index); else printf("Number is not exist in the array"); return 0; } // This code is contributed by Susobhan Akhuli
Java
// Java program to implement Jump Search. public class JumpSearch { public static int jumpSearch(int[] arr, int x) { int n = arr.length; // Finding block size to be jumped int step = (int)Math.floor(Math.sqrt(n)); // Finding the block where element is // present (if it is present) int prev = 0; while (arr[Math.min(step, n)-1] < x) { prev = step; step += (int)Math.floor(Math.sqrt(n)); if (prev >= n) return -1; } // Doing a linear search for x in block // beginning with prev. while (arr[prev] < x) { prev++; // If we reached next block or end of // array, element is not present. if (prev == Math.min(step, n)) return -1; } // If element is found if (arr[prev] == x) return prev; return -1; } // Driver program to test function public static void main(String [ ] args) { int arr[] = { 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610}; int x = 55; // Find the index of 'x' using Jump Search int index = jumpSearch(arr, x); // Print the index where 'x' is located System.out.println("\nNumber " + x + " is at index " + index); } }
Python3
# Python3 code to implement Jump Search import math def jumpSearch( arr , x , n ): # Finding block size to be jumped step = math.sqrt(n) # Finding the block where element is # present (if it is present) prev = 0 while arr[int(min(step, n)-1)] < x: prev = step step += math.sqrt(n) if prev >= n: return -1 # Doing a linear search for x in # block beginning with prev. while arr[int(prev)] < x: prev += 1 # If we reached next block or end # of array, element is not present. if prev == min(step, n): return -1 # If element is found if arr[int(prev)] == x: return prev return -1 # Driver code to test function arr = [ 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610 ] x = 55 n = len(arr) # Find the index of 'x' using Jump Search index = jumpSearch(arr, x, n) # Print the index where 'x' is located print("Number" , x, "is at index" ,"%.0f"%index) # This code is contributed by "Sharad_Bhardwaj".
C#
// C# program to implement Jump Search. using System; public class JumpSearch { public static int jumpSearch(int[] arr, int x) { int n = arr.Length; // Finding block size to be jumped int step = (int)Math.Sqrt(n); // Finding the block where element is // present (if it is present) int prev = 0; while (arr[Math.Min(step, n)-1] < x) { prev = step; step += (int)Math.Sqrt(n); if (prev >= n) return -1; } // Doing a linear search for x in block // beginning with prev. while (arr[prev] < x) { prev++; // If we reached next block or end of // array, element is not present. if (prev == Math.Min(step, n)) return -1; } // If element is found if (arr[prev] == x) return prev; return -1; } // Driver program to test function public static void Main() { int[] arr = { 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610}; int x = 55; // Find the index of 'x' using Jump Search int index = jumpSearch(arr, x); // Print the index where 'x' is located Console.Write("Number " + x + " is at index " + index); } }
PHP
<?php // PHP program to implement Jump Search function jumpSearch($arr, $x, $n) { // Finding block size to be jumped $step = sqrt($n); // Finding the block where element is // present (if it is present) $prev = 0; while ($arr[min($step, $n)-1] < $x) { $prev = $step; $step += sqrt($n); if ($prev >= $n) return -1; } // Doing a linear search for x in block // beginning with prev. while ($arr[$prev] < $x) { $prev++; // If we reached next block or end of // array, element is not present. if ($prev == min($step, $n)) return -1; } // If element is found if ($arr[$prev] == $x) return $prev; return -1; } // Driver program to test function $arr = array( 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610 ); $x = 55; $n = sizeof($arr) / sizeof($arr[0]); // Find the index of '$x' using Jump Search $index = jumpSearch($arr, $x, $n); // Print the index where '$x' is located echo "Number ".$x." is at index " .$index; return 0; ?>
Javascript
<script> // Javascript program to implement Jump Search function jumpSearch(arr, x, n) { // Finding block size to be jumped let step = Math.sqrt(n); // Finding the block where element is // present (if it is present) let prev = 0; while (arr[Math.min(step, n)-1] < x) { prev = step; step += Math.sqrt(n); if (prev >= n) return -1; } // Doing a linear search for x in block // beginning with prev. while (arr[prev] < x) { prev++; // If we reached next block or end of // array, element is not present. if (prev == Math.min(step, n)) return -1; } // If element is found if (arr[prev] == x) return prev; return -1; } // Driver program to test function let arr = [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]; let x = 55; let n = arr.length; // Find the index of 'x' using Jump Search let index = jumpSearch(arr, x, n); // Print the index where 'x' is located document.write(`Number ${x} is at index ${index}`); // This code is contributed by _saurabh_jaiswal </script>
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA