scipy stats.arcsine() | Python

scipy.stats.arcsine() es una variable aleatoria continua de arcoseno que se define con un formato estándar y algunos parámetros de forma para completar su especificación.

Parámetros:
q: probabilidad de cola inferior y superior
x: cuantiles
loc: parámetro de ubicación [opcional]. Predeterminado = 0
escala: [opcional] parámetro de escala. Predeterminado = 1
tamaño: [tupla de enteros, opcional] forma o variantes aleatorias.
momentos: [opcional] compuesto por letras [‘mvsk’]; ‘m’ = media, ‘v’ = varianza, ‘s’ = sesgo de Fisher y ‘k’ = curtosis de Fisher. (predeterminado = ‘MV’).

Resultados: variable aleatoria continua arcoseno

Código #1: Crear una variable aleatoria continua de arcoseno

# importing scipy
from scipy.stats import arcsine
  
numargs = arcsine.numargs
[ ] = [0.6, ] * numargs
rv = arcsine()
  
print ("RV : \n", rv)

Producción :

RV :  
<scipy.stats._distn_infrastructure.rv_frozen object at 0x0000029484D796D8>

Código #2: variables aleatorias de arcoseno y función de distribución de probabilidad.

quantile = np.arange (0.01, 1, 0.1)
   
# Random Variates
R = arcsine.rvs(scale = 2,  size = 10)
print ("Random Variates : \n", R)
  
# PDF
R = arcsine.pdf(x = quantile, scale = 2)
print ("\nProbability Distribution : \n", R)

Producción:

Random Variates : 
 [1.17353658 1.96350916 1.73419819 0.71255312 0.28760466 1.54410451
 1.9644408  0.35014597 0.26798525 0.24599504]

Probability Distribution : 
 [2.25643896 0.69810843 0.51917523 0.43977033 0.39423905 0.3651505
 0.34568283 0.33260295 0.32421577 0.31960693]

Código #3: Representación gráfica.

# libraries
import numpy as np
import matplotlib.pyplot as plt
  
distribution = np.linspace(0, np.minimum(rv.dist.b, 3))
print ("Distribution : \n", distribution)
  
plot = plt.plot(distribution, rv.pdf(distribution))

Producción :

Distribution : 
 [0.         0.02040816 0.04081633 0.06122449 0.08163265 0.10204082
 0.12244898 0.14285714 0.16326531 0.18367347 0.20408163 0.2244898
 0.24489796 0.26530612 0.28571429 0.30612245 0.32653061 0.34693878
 0.36734694 0.3877551  0.40816327 0.42857143 0.44897959 0.46938776
 0.48979592 0.51020408 0.53061224 0.55102041 0.57142857 0.59183673
 0.6122449  0.63265306 0.65306122 0.67346939 0.69387755 0.71428571
 0.73469388 0.75510204 0.7755102  0.79591837 0.81632653 0.83673469
 0.85714286 0.87755102 0.89795918 0.91836735 0.93877551 0.95918367
 0.97959184 1.        ]

Código n.º 4: ubicación y escala variables

from scipy.stats import arcsine
import matplotlib.pyplot as plt
import numpy as np
a = 2
b = 2
x = np.linspace(0, np.minimum(rv.dist.b, 3))
  
# Varying location and scale
y1 = arcsine.pdf(x, -0.1, .8)
y2 = arcsine.pdf(x, -3.25, 3.25)
plt.plot(x, y1, "*", x, y2, "r--")

Publicación traducida automáticamente

Artículo escrito por vishal3096 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *