Se intercambian dos de los Nodes de un árbol de búsqueda binaria (BST). Arreglar (o corregir) el BST.
Input Tree: 10 / \ 5 8 / \ 2 20 In the above tree, nodes 20 and 8 must be swapped to fix the tree. Following is the output tree 10 / \ 5 20 / \ 2 8
El recorrido en orden de un BST produce una array ordenada. Entonces, un método simple es almacenar el recorrido en orden del árbol de entrada en una array auxiliar. Ordenar la array auxiliar. Finalmente, inserte los elementos auxiliares de la array nuevamente en el BST, manteniendo la misma estructura del BST. La complejidad temporal de este método es O(nLogn) y el espacio auxiliar necesario es O(n).
C++
// Two nodes in the BST's swapped, correct the BST. #include <bits/stdc++.h> using namespace std; /* A binary tree node has data, pointer to left child and a pointer to right child */ struct node { int data; struct node *left, *right; }; // A utility function to swap two integers void swap( int* a, int* b ) { int t = *a; *a = *b; *b = t; } /* Helper function that allocates a new node with the given data and NULL left and right pointers. */ struct node* newNode(int data) { struct node* node = (struct node *)malloc(sizeof(struct node)); node->data = data; node->left = NULL; node->right = NULL; return(node); } // This function does inorder traversal to find out the two swapped nodes. // It sets three pointers, first, middle and last. If the swapped nodes are // adjacent to each other, then first and middle contain the resultant nodes // Else, first and last contain the resultant nodes void correctBSTUtil( struct node* root, struct node** first, struct node** middle, struct node** last, struct node** prev ) { if( root ) { // Recur for the left subtree correctBSTUtil( root->left, first, middle, last, prev ); // If this node is smaller than the previous node, it's violating // the BST rule. if (*prev && root->data < (*prev)->data) { // If this is first violation, mark these two nodes as // 'first' and 'middle' if ( !*first ) { *first = *prev; *middle = root; } // If this is second violation, mark this node as last else *last = root; } // Mark this node as previous *prev = root; // Recur for the right subtree correctBSTUtil( root->right, first, middle, last, prev ); } } // A function to fix a given BST where two nodes are swapped. This // function uses correctBSTUtil() to find out two nodes and swaps the // nodes to fix the BST void correctBST( struct node* root ) { // Initialize pointers needed for correctBSTUtil() struct node *first, *middle, *last, *prev; first = middle = last = prev = NULL; // Set the pointers to find out two nodes correctBSTUtil( root, &first, &middle, &last, &prev ); // Fix (or correct) the tree if( first && last ) swap( &(first->data), &(last->data) ); else if( first && middle ) // Adjacent nodes swapped swap( &(first->data), &(middle->data) ); // else nodes have not been swapped, passed tree is really BST. } /* A utility function to print Inorder traversal */ void printInorder(struct node* node) { if (node == NULL) return; printInorder(node->left); cout <<" "<< node->data; printInorder(node->right); } /* Driver program to test above functions*/ int main() { /* 6 / \ 10 2 / \ / \ 1 3 7 12 10 and 2 are swapped */ struct node *root = newNode(6); root->left = newNode(10); root->right = newNode(2); root->left->left = newNode(1); root->left->right = newNode(3); root->right->right = newNode(12); root->right->left = newNode(7); cout <<"Inorder Traversal of the original tree \n"; printInorder(root); correctBST(root); cout <<"\nInorder Traversal of the fixed tree \n"; printInorder(root); return 0; } // This code is contributed by shivanisinghss2110
C
// Two nodes in the BST's swapped, correct the BST. #include <stdio.h> #include <stdlib.h> /* A binary tree node has data, pointer to left child and a pointer to right child */ struct node { int data; struct node *left, *right; }; // A utility function to swap two integers void swap( int* a, int* b ) { int t = *a; *a = *b; *b = t; } /* Helper function that allocates a new node with the given data and NULL left and right pointers. */ struct node* newNode(int data) { struct node* node = (struct node *)malloc(sizeof(struct node)); node->data = data; node->left = NULL; node->right = NULL; return(node); } // This function does inorder traversal to find out the two swapped nodes. // It sets three pointers, first, middle and last. If the swapped nodes are // adjacent to each other, then first and middle contain the resultant nodes // Else, first and last contain the resultant nodes void correctBSTUtil( struct node* root, struct node** first, struct node** middle, struct node** last, struct node** prev ) { if( root ) { // Recur for the left subtree correctBSTUtil( root->left, first, middle, last, prev ); // If this node is smaller than the previous node, it's violating // the BST rule. if (*prev && root->data < (*prev)->data) { // If this is first violation, mark these two nodes as // 'first' and 'middle' if ( !*first ) { *first = *prev; *middle = root; } // If this is second violation, mark this node as last else *last = root; } // Mark this node as previous *prev = root; // Recur for the right subtree correctBSTUtil( root->right, first, middle, last, prev ); } } // A function to fix a given BST where two nodes are swapped. This // function uses correctBSTUtil() to find out two nodes and swaps the // nodes to fix the BST void correctBST( struct node* root ) { // Initialize pointers needed for correctBSTUtil() struct node *first, *middle, *last, *prev; first = middle = last = prev = NULL; // Set the pointers to find out two nodes correctBSTUtil( root, &first, &middle, &last, &prev ); // Fix (or correct) the tree if( first && last ) swap( &(first->data), &(last->data) ); else if( first && middle ) // Adjacent nodes swapped swap( &(first->data), &(middle->data) ); // else nodes have not been swapped, passed tree is really BST. } /* A utility function to print Inorder traversal */ void printInorder(struct node* node) { if (node == NULL) return; printInorder(node->left); printf("%d ", node->data); printInorder(node->right); } /* Driver program to test above functions*/ int main() { /* 6 / \ 10 2 / \ / \ 1 3 7 12 10 and 2 are swapped */ struct node *root = newNode(6); root->left = newNode(10); root->right = newNode(2); root->left->left = newNode(1); root->left->right = newNode(3); root->right->right = newNode(12); root->right->left = newNode(7); printf("Inorder Traversal of the original tree \n"); printInorder(root); correctBST(root); printf("\nInorder Traversal of the fixed tree \n"); printInorder(root); return 0; }
Java
// Java program to correct the BST // if two nodes are swapped import java.util.*; import java.lang.*; import java.io.*; class Node { int data; Node left, right; Node(int d) { data = d; left = right = null; } } class BinaryTree { Node first, middle, last, prev; // This function does inorder traversal // to find out the two swapped nodes. // It sets three pointers, first, middle // and last. If the swapped nodes are // adjacent to each other, then first // and middle contain the resultant nodes // Else, first and last contain the // resultant nodes void correctBSTUtil( Node root) { if( root != null ) { // Recur for the left subtree correctBSTUtil( root.left); // If this node is smaller than // the previous node, it's // violating the BST rule. if (prev != null && root.data < prev.data) { // If this is first violation, // mark these two nodes as // 'first' and 'middle' if (first == null) { first = prev; middle = root; } // If this is second violation, // mark this node as last else last = root; } // Mark this node as previous prev = root; // Recur for the right subtree correctBSTUtil( root.right); } } // A function to fix a given BST where // two nodes are swapped. This function // uses correctBSTUtil() to find out // two nodes and swaps the nodes to // fix the BST void correctBST( Node root ) { // Initialize pointers needed // for correctBSTUtil() first = middle = last = prev = null; // Set the pointers to find out // two nodes correctBSTUtil( root ); // Fix (or correct) the tree if( first != null && last != null ) { int temp = first.data; first.data = last.data; last.data = temp; } // Adjacent nodes swapped else if( first != null && middle != null ) { int temp = first.data; first.data = middle.data; middle.data = temp; } // else nodes have not been swapped, // passed tree is really BST. } /* A utility function to print Inorder traversal */ void printInorder(Node node) { if (node == null) return; printInorder(node.left); System.out.print(" " + node.data); printInorder(node.right); } // Driver program to test above functions public static void main (String[] args) { /* 6 / \ 10 2 / \ / \ 1 3 7 12 10 and 2 are swapped */ Node root = new Node(6); root.left = new Node(10); root.right = new Node(2); root.left.left = new Node(1); root.left.right = new Node(3); root.right.right = new Node(12); root.right.left = new Node(7); System.out.println("Inorder Traversal"+ " of the original tree"); BinaryTree tree = new BinaryTree(); tree.printInorder(root); tree.correctBST(root); System.out.println("\nInorder Traversal"+ " of the fixed tree"); tree.printInorder(root); } } // This code is contributed by Chhavi
Python3
# Python3 program to correct the BST # if two nodes are swapped class Node: # Constructor to create a new node def __init__(self, data): self.key = data self.left = None self.right = None # Utility function to track the nodes # that we have to swap def correctBstUtil(root, first, middle, last, prev): if(root): # Recur for the left sub tree correctBstUtil(root.left, first, middle, last, prev) # If this is the first violation, mark these # two nodes as 'first and 'middle' if(prev[0] and root.key < prev[0].key): if(not first[0]): first[0] = prev[0] middle[0] = root else: # If this is the second violation, # mark this node as last last[0] = root prev[0] = root # Recur for the right subtree correctBstUtil(root.right, first, middle, last, prev) # A function to fix a given BST where # two nodes are swapped. This function # uses correctBSTUtil() to find out two # nodes and swaps the nodes to fix the BST def correctBst(root): # Followed four lines just for forming # an array with only index 0 filled # with None and we will update it accordingly. # we made it null so that we can fill # node data in them. first = [None] middle = [None] last = [None] prev = [None] # Setting arrays (having zero index only) # for capturing the required node correctBstUtil(root, first, middle, last, prev) # Fixing the two nodes if(first[0] and last[0]): # Swapping for first and last key values first[0].key, last[0].key = (last[0].key, first[0].key) elif(first[0] and middle[0]): # Swapping for first and middle key values first[0].key, middle[0].key = (middle[0].key, first[0].key) # else tree will be fine # Function to print inorder # traversal of tree def PrintInorder(root): if(root): PrintInorder(root.left) print(root.key, end = " ") PrintInorder(root.right) else: return # Driver code # 6 # / \ # 10 2 # / \ / \ # 1 3 7 12 # Following 7 lines are for tree formation root = Node(6) root.left = Node(10) root.right = Node(2) root.left.left = Node(1) root.left.right = Node(3) root.right.left = Node(7) root.right.right = Node(12) # Printing inorder traversal of normal tree print("inorder traversal of normal tree") PrintInorder(root) print("") # Function call to do the task correctBst(root) # Printing inorder for corrected Bst tree print("") print("inorder for corrected BST") PrintInorder(root) # This code is contributed by rajutkarshai
C#
// C# program to correct the BST // if two nodes are swapped using System; class Node{ public int data; public Node left, right; public Node(int d) { data = d; left = right = null; } } class BinaryTree { Node first, middle, last, prev; // This function does inorder traversal // to find out the two swapped nodes. // It sets three pointers, first, middle // and last. If the swapped nodes are // adjacent to each other, then first // and middle contain the resultant nodes // Else, first and last contain the // resultant nodes void correctBSTUtil( Node root) { if( root != null ) { // Recur for the // left subtree correctBSTUtil(root.left); // If this node is smaller than // the previous node, it's // violating the BST rule. if (prev != null && root.data < prev.data) { // If this is first violation, // mark these two nodes as // 'first' and 'middle' if (first == null) { first = prev; middle = root; } // If this is second violation, // mark this node as last else last = root; } // Mark this node // as previous prev = root; // Recur for the // right subtree correctBSTUtil(root.right); } } // A function to fix a given BST where // two nodes are swapped. This function // uses correctBSTUtil() to find out // two nodes and swaps the nodes to // fix the BST void correctBST( Node root ) { // Initialize pointers needed // for correctBSTUtil() first = middle = last = prev = null; // Set the pointers to // find out two nodes correctBSTUtil(root); // Fix (or correct) // the tree if(first != null && last != null) { int temp = first.data; first.data = last.data; last.data = temp; } // Adjacent nodes swapped else if(first != null && middle != null) { int temp = first.data; first.data = middle.data; middle.data = temp; } // else nodes have not been // swapped, passed tree is // really BST. } // A utility function to print // Inorder traversal void printInorder(Node node) { if (node == null) return; printInorder(node.left); Console.Write(" " + node.data); printInorder(node.right); } // Driver code public static void Main(String[] args) { /* 6 / \ 10 2 / \ / \ 1 3 7 12 10 and 2 are swapped */ Node root = new Node(6); root.left = new Node(10); root.right = new Node(2); root.left.left = new Node(1); root.left.right = new Node(3); root.right.right = new Node(12); root.right.left = new Node(7); Console.WriteLine("Inorder Traversal" + " of the original tree"); BinaryTree tree = new BinaryTree(); tree.printInorder(root); tree.correctBST(root); Console.WriteLine("\nInorder Traversal" + " of the fixed tree"); tree.printInorder(root); } } // This code is contributed by gauravrajput1
Javascript
<script> // JavaScript program to correct the BST // if two nodes are swapped class Node { constructor(val) { this.data = val; this.left = null; this.right = null; } } var first, middle, last, prev; // This function does inorder traversal // to find out the two swapped nodes. // It sets three pointers, first, middle // and last. If the swapped nodes are // adjacent to each other, then first // and middle contain the resultant nodes // Else, first and last contain the // resultant nodes function correctBSTUtil(root) { if (root != null) { // Recur for the left subtree correctBSTUtil(root.left); // If this node is smaller than // the previous node, it's // violating the BST rule. if (prev != null && root.data < prev.data) { // If this is first violation, // mark these two nodes as // 'first' and 'middle' if (first == null) { first = prev; middle = root; } // If this is second violation, // mark this node as last else last = root; } // Mark this node as previous prev = root; // Recur for the right subtree correctBSTUtil(root.right); } } // A function to fix a given BST where // two nodes are swapped. This function // uses correctBSTUtil() to find out // two nodes and swaps the nodes to // fix the BST function correctBST(root) { // Initialize pointers needed // for correctBSTUtil() first = middle = last = prev = null; // Set the pointers to find out // two nodes correctBSTUtil(root); // Fix (or correct) the tree if (first != null && last != null) { var temp = first.data; first.data = last.data; last.data = temp; } // Adjacent nodes swapped else if (first != null && middle != null) { var temp = first.data; first.data = middle.data; middle.data = temp; } // else nodes have not been swapped, // passed tree is really BST. } /* * A utility function to print Inorder traversal */ function printInorder(node) { if (node == null) return; printInorder(node.left); document.write(" " + node.data); printInorder(node.right); } // Driver program to test above functions /* * 6 / \ 10 2 / \ / \ 1 3 7 12 * * 10 and 2 are swapped */ var root = new Node(6); root.left = new Node(10); root.right = new Node(2); root.left.left = new Node(1); root.left.right = new Node(3); root.right.right = new Node(12); root.right.left = new Node(7); document.write("Inorder Traversal" + " of the original tree<br/>"); printInorder(root); correctBST(root); document.write("<br/>Inorder Traversal" + " of the fixed tree<br/>"); printInorder(root); // This code contributed by aashish1995 </script>
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA