Secuencia en zigzag de suma más grande en una array

Dada una array de tamaño nxn, encuentre la suma de la secuencia Zigzag con la suma más grande. Una secuencia en zigzag comienza en la parte superior y termina en la parte inferior. Dos elementos consecutivos de secuencia no pueden pertenecer a la misma columna. 

Ejemplos: 

Input : mat[][] = 3  1  2
                  4  8  5
                  6  9  7
Output : 18
Zigzag sequence is: 3->8->7
Another such sequence is 2->4->7

Input : mat[][] =  4  2  1
                   3  9  6
                  11  3 15
Output : 28

Este problema tiene una subestructura óptima

Maximum Zigzag sum starting from arr[i][j] to a 
bottom cell can be written as :
zzs(i, j) = arr[i][j] + max(zzs(i+1, k)), 
               where k = 0, 1, 2 and k != j
zzs(i, j) = arr[i][j], if i = n-1 

We have to find the largest among all as
Result = zzs(0, j) where 0 <= j < n

Implementación:

C++

// C++ program to find the largest sum zigzag sequence
#include <bits/stdc++.h>
using namespace std;
 
const int MAX = 100;
 
// Returns largest sum of a Zigzag sequence starting
// from (i, j) and ending at a bottom cell.
int largestZigZagSumRec(int mat[][MAX], int i,
                                int j, int n)
{
   // If we have reached bottom
   if (i == n-1)
     return mat[i][j];
 
   // Find the largest sum by considering all
   // possible next elements in sequence.
   int zzs = 0;
   for (int k=0; k<n; k++)
     if (k != j)
       zzs = max(zzs, largestZigZagSumRec(mat, i+1, k, n));
 
   return zzs + mat[i][j];
}
 
// Returns largest possible sum of a Zigzag sequence
// starting from top and ending at bottom.
int largestZigZag(int mat[][MAX], int n)
{
   // Consider all cells of top row as starting point
   int res = 0;
   for (int j=0; j<n; j++)
     res = max(res, largestZigZagSumRec(mat, 0, j, n));
 
   return res;
}
 
// Driver program to test above
int main()
{
    int n = 3;
    int  mat[][MAX] = { {4, 2, 1},
                        {3, 9, 6},
                        {11, 3, 15}};
    cout << "Largest zigzag sum: " << largestZigZag(mat, n);
    return 0;
}

Java

// Java program to find the largest sum
// zigzag sequence
import java.io.*;
 
class GFG {
 
    static int MAX = 100;
     
    // Returns largest sum of a Zigzag
    // sequence starting from (i, j)
    // and ending at a bottom cell.
    static int largestZigZagSumRec(int mat[][],
                            int i, int j, int n)
    {
         
        // If we have reached bottom
        if (i == n-1)
            return mat[i][j];
         
        // Find the largest sum by considering all
        // possible next elements in sequence.
        int zzs = 0;
         
        for (int k=0; k<n; k++)
            if (k != j)
            zzs = Math.max(zzs,
               largestZigZagSumRec(mat, i+1, k, n));
         
        return zzs + mat[i][j];
    }
     
    // Returns largest possible sum of a Zigzag
    // sequence starting from top and ending
    // at bottom.
    static int largestZigZag(int mat[][], int n)
    {
        // Consider all cells of top row as starting
        // point
        int res = 0;
        for (int j=0; j<n; j++)
            res = Math.max(res,
                   largestZigZagSumRec(mat, 0, j, n));
         
        return res;
    }
     
    // Driver program to test above
    public static void main (String[] args)
    {
        int n = 3;
         
        int mat[][] = { {4, 2, 1},
                        {3, 9, 6},
                        {11, 3, 15} };
        System.out.println( "Largest zigzag sum: "
                       + largestZigZag(mat, n));
    }
}
 
// This code is contributed by anuj_67.

Python 3

# Python3 program to find the largest
# sum zigzag sequence
MAX = 100
 
# Returns largest sum of a Zigzag
# sequence starting from (i, j) and
# ending at a bottom cell.
def largestZigZagSumRec( mat, i, j, n):
     
    # If we have reached bottom
    if (i == n-1):
        return mat[i][j]
     
    # Find the largest sum by considering all
    # possible next elements in sequence.
    zzs = 0
    for k in range(n):
        if (k != j):
            zzs = max(zzs, largestZigZagSumRec(mat, i + 1, k, n))
     
    return zzs + mat[i][j]
 
# Returns largest possible sum of a
# Zigzag sequence starting from top
# and ending at bottom.
def largestZigZag(mat, n):
         
    # Consider all cells of top row as
    # starting point
    res = 0
    for j in range(n):
        res = max(res, largestZigZagSumRec(mat, 0, j, n))
     
    return res
 
# Driver Code
if __name__ == "__main__":
    n = 3
    mat = [ [4, 2, 1],
            [3, 9, 6],
            [11, 3, 15]]
    print("Largest zigzag sum: " ,
           largestZigZag(mat, n))
 
# This code is contributed by ChitraNayal

C#

// C# program to find the largest sum
// zigzag sequence
using System;
class GFG {
 
    // static int MAX = 100;
     
    // Returns largest sum of a Zigzag
    // sequence starting from (i, j)
    // and ending at a bottom cell.
    static int largestZigZagSumRec(int [,]mat,
                          int i, int j, int n)
    {
         
        // If we have reached bottom
        if (i == n-1)
            return mat[i,j];
         
        // Find the largest sum by considering all
        // possible next elements in sequence.
        int zzs = 0;
         
        for (int k = 0; k < n; k++)
            if (k != j)
            zzs = Math.Max(zzs, largestZigZagSumRec(mat,
                                           i + 1, k, n));
         
        return zzs + mat[i,j];
    }
     
    // Returns largest possible
    // sum of a Zigzag sequence
    // starting from top and ending
    // at bottom.
    static int largestZigZag(int [,]mat, int n)
    {
         
        // Consider all cells of
        // top row as starting
        // point
        int res = 0;
        for (int j = 0; j < n; j++)
            res = Math.Max(res,
                largestZigZagSumRec(mat, 0, j, n));
         
        return res;
    }
     
    // Driver Code
    public static void Main ()
    {
        int n = 3;
        int [,]mat = {{4, 2, 1},
                      {3, 9, 6},
                      {11, 3, 15}};
        Console.WriteLine("Largest zigzag sum: "
                           + largestZigZag(mat, n));
    }
}
 
// This code is contributed by anuj_67.

PHP

<?php
// PHP program to find the
// largest sum zigzag sequence
 
$MAX = 100;
 
// Returns largest sum of a
// Zigzag sequence starting
// from (i, j) and ending at
// a bottom cell.
function largestZigZagSumRec($mat, $i,
                              $j, $n)
{
    // If we have reached bottom
    if ($i == $n - 1)
        return $mat[$i][$j];
     
    // Find the largest sum
    // by considering all
    // possible next elements
    // in sequence.
    $zzs = 0;
    for ($k = 0; $k < $n; $k++)
        if ($k != $j)
        $zzs = max($zzs, largestZigZagSumRec($mat,
                                $i + 1, $k, $n));
     
    return $zzs + $mat[$i][$j];
}
 
// Returns largest possible
// sum of a Zigzag sequence
// starting from top and
// ending at bottom.
function largestZigZag( $mat, $n)
{
     
    // Consider all cells of top
    // row as starting point
    $res = 0;
    for ($j = 0; $j < $n; $j++)
        $res = max($res, largestZigZagSumRec(
                            $mat, 0, $j, $n));
     
    return $res;
}
 
    // Driver Code
    $n = 3;
    $mat = array(array(4, 2, 1),
                 array(3, 9, 6),
                 array(11, 3, 15));
    echo "Largest zigzag sum: " , largestZigZag($mat, $n);
     
// This code is contributed by anuj_67.
?>

Javascript

<script>
 
// Javascript program to find the largest sum
// zigzag sequence
 
    let  MAX = 100;
     
    // Returns largest sum of a Zigzag
    // sequence starting from (i, j)
    // and ending at a bottom cell.
    function largestZigZagSumRec(mat,i,j,n)
    {
        // If we have reached bottom
        if (i == n-1)
            return mat[i][j];
           
        // Find the largest sum by considering all
        // possible next elements in sequence.
        let zzs = 0;
           
        for (let k=0; k<n; k++)
            if (k != j)
            zzs = Math.max(zzs,
               largestZigZagSumRec(mat, i+1, k, n));
           
        return zzs + mat[i][j];
    }
     
     
    // Returns largest possible sum of a Zigzag
    // sequence starting from top and ending
    // at bottom.
    function largestZigZag(mat,n)
    {
        // Consider all cells of top row as starting
        // point
        let res = 0;
        for (let j=0; j<n; j++)
            res = Math.max(res,
                   largestZigZagSumRec(mat, 0, j, n));
           
        return res;
    }
     
    // Driver program to test above
    let n = 3;
     
    let mat = [ [4, 2, 1],
            [3, 9, 6],
            [11, 3, 15]];
       document.write("Largest zigzag sum: " +
           largestZigZag(mat, n))
     
    // This code is contributed by rag2127
     
</script>
Producción

Largest zigzag sum: 28

Subproblemas superpuestos 
Considerando la implementación anterior, para una array mat[][] de tamaño 3 x 3, para encontrar la suma en zigzag(zzs) para un elemento mat(i,j), se forma el siguiente árbol de recurrencia.

Recursion tree for cell (0, 0)
             zzs(0,0)                                
           /         \                               
    zzs(1,1)           zzs(1,2)                      
    /     \            /      \                      
zzs(2,0)  zzs(2,2)  zzs(2,0)  zzs(2,1)               


Recursion tree for cell (0, 1)
            zzs(0,1)
           /         \              
    zzs(1,0)          zzs(1,2)
    /     \            /      \    
zzs(2,1)  zzs(2,2)  zzs(2,0)  zzs(2,1)

Recursion tree for cell (0, 2)
             zzs(0,2)
           /         \                                             
    zzs(1,0)           zzs(1,1)                             
    /     \            /      \                             
 zzs(2,1)  zzs(2,2)  zzs(2,0)  zzs(2,2)

Podemos ver que hay muchos subproblemas que se resuelven una y otra vez. Por lo tanto, este problema tiene la propiedad de subestructura superpuesta y el recálculo de los mismos subproblemas se puede evitar mediante Memoización o Tabulación. A continuación se muestra una implementación tabulada para el problema LIS.

Implementación:

C++

// Memoization based C++ program to find the largest
// sum zigzag sequence
#include <bits/stdc++.h>
using namespace std;
 
const int MAX = 100;
int dp[MAX][MAX];
 
// Returns largest sum of a Zigzag sequence starting
// from (i, j) and ending at a bottom cell.
int largestZigZagSumRec(int mat[][MAX], int i,
                                int j, int n)
{
   if (dp[i][j] != -1)
      return dp[i][j];
 
   // If we have reached bottom
   if (i == n-1)
     return (dp[i][j] = mat[i][j]);
 
   // Find the largest sum by considering all
   // possible next elements in sequence.
   int zzs = 0;
   for (int k=0; k<n; k++)
     if (k != j)
       zzs = max(zzs, largestZigZagSumRec(mat, i+1, k, n));
 
   return (dp[i][j] = (zzs + mat[i][j]));
}
 
// Returns largest possible sum of a Zigzag sequence
// starting from top and ending at bottom.
int largestZigZag(int mat[][MAX], int n)
{
   memset(dp, -1, sizeof(dp));
 
   // Consider all cells of top row as starting point
   int res = 0;
   for (int j=0; j<n; j++)
     res = max(res, largestZigZagSumRec(mat, 0, j, n));
 
   return res;
}
 
// Driver program to test above
int main()
{
    int n = 3;
    int  mat[][MAX] = { {4, 2, 1},
                        {3, 9, 6},
                        {11, 3, 15}};
    cout << "Largest zigzag sum: " << largestZigZag(mat, n);
    return 0;
}

Java

// Memoization based Java program to find the largest
// sum zigzag sequence
class GFG
{
 
static int MAX = 100;
static int [][]dp = new int[MAX][MAX];
 
// Returns largest sum of a Zigzag sequence starting
// from (i, j) and ending at a bottom cell.
static int largestZigZagSumRec(int mat[][], int i,
                                int j, int n)
{
    if (dp[i][j] != -1)
        return dp[i][j];
     
    // If we have reached bottom
    if (i == n - 1)
        return (dp[i][j] = mat[i][j]);
     
    // Find the largest sum by considering all
    // possible next elements in sequence.
    int zzs = 0;
    for (int k = 0; k < n; k++)
        if (k != j)
            zzs = Math.max(zzs, largestZigZagSumRec(mat,
                                    i + 1, k, n));
     
    return (dp[i][j] = (zzs + mat[i][j]));
}
 
// Returns largest possible sum of a Zigzag sequence
// starting from top and ending at bottom.
static int largestZigZag(int mat[][], int n)
{
    for (int i = 0; i < MAX; i++)
        for (int k = 0; k < MAX; k++)
                dp[i][k] = -1;
     
    // Consider all cells of top row as starting point
    int res = 0;
    for (int j = 0; j < n; j++)
        res = Math.max(res, largestZigZagSumRec(mat,
                                           0, j, n));
     
    return res;
}
 
// Driver code
public static void main(String[] args)
{
    int n = 3;
    int mat[][] = { {4, 2, 1},
                    {3, 9, 6},
                    {11, 3, 15}};
    System.out.print("Largest zigzag sum: " +
                        largestZigZag(mat, n));
}
}
 
// This code is contributed by PrinciRaj1992

Python3

# Memoization based Python3 program to find the largest
# sum zigzag sequence
MAX = 100;
 
dp = [[0 for i in range(MAX)] for j in range(MAX)]
 
# Returns largest sum of a Zigzag sequence starting
# from (i, j) and ending at a bottom cell.
def largestZigZagSumRec(mat, i, j, n):
    if (dp[i][j] != -1):
        return dp[i][j];
 
    # If we have reached bottom
    if (i == n - 1):
        dp[i][j] = mat[i][j];
        return (dp[i][j]);
 
    # Find the largest sum by considering all
    # possible next elements in sequence.
    zzs = 0;
    for k in range(n):
        if (k != j):
            zzs = max(zzs, largestZigZagSumRec(mat,
                     i + 1, k, n));
    dp[i][j] = (zzs + mat[i][j]);
    return (dp[i][j]);
 
# Returns largest possible sum of a Zigzag sequence
# starting from top and ending at bottom.
def largestZigZag(mat, n):
    for i in range(MAX):
        for k in range(MAX):
            dp[i][k] = -1;
 
    # Consider all cells of top row as starting point
    res = 0;
    for j in range(n):
        res = max(res, largestZigZagSumRec(mat, 0, j, n));
 
    return res;
 
# Driver code
if __name__ == '__main__':
    n = 3;
    mat = [[4, 2, 1], [3, 9, 6], [11, 3, 15]];
    print("Largest zigzag sum: ", largestZigZag(mat, n));
 
# This code is contributed by Rajput-Ji

C#

// Memoization based C# program to find the largest
// sum zigzag sequence
using System;
 
class GFG
{
 
static int MAX = 100;
static int [,]dp = new int[MAX, MAX];
 
// Returns largest sum of a Zigzag sequence starting
// from (i, j) and ending at a bottom cell.
static int largestZigZagSumRec(int [,]mat, int i,
                                int j, int n)
{
    if (dp[i, j] != -1)
        return dp[i, j];
     
    // If we have reached bottom
    if (i == n - 1)
        return (dp[i, j] = mat[i, j]);
     
    // Find the largest sum by considering all
    // possible next elements in sequence.
    int zzs = 0;
    for (int k = 0; k < n; k++)
        if (k != j)
            zzs = Math.Max(zzs, largestZigZagSumRec(mat,
                                    i + 1, k, n));
     
    return (dp[i, j] = (zzs + mat[i, j]));
}
 
// Returns largest possible sum of a Zigzag sequence
// starting from top and ending at bottom.
static int largestZigZag(int [,]mat, int n)
{
    for (int i = 0; i < MAX; i++)
        for (int k = 0; k < MAX; k++)
                dp[i, k] = -1;
     
    // Consider all cells of top row as starting point
    int res = 0;
    for (int j = 0; j < n; j++)
        res = Math.Max(res, largestZigZagSumRec(mat,
                                        0, j, n));
    return res;
}
 
// Driver code
public static void Main(String[] args)
{
    int n = 3;
    int [,]mat = { {4, 2, 1},
                    {3, 9, 6},
                    {11, 3, 15}};
    Console.Write("Largest zigzag sum: " +
                        largestZigZag(mat, n));
}
}
 
// This code is contributed by 29AjayKumar

Javascript

<script>
// Memoization based Javascript program to find the largest
// sum zigzag sequence
     
    let MAX = 100;
    let dp=new Array(MAX);
     
    // Returns largest sum of a Zigzag sequence starting
// from (i, j) and ending at a bottom cell.
    function largestZigZagSumRec(mat,i,j,n)
    {
        if (dp[i][j] != -1)
        return dp[i][j];
      
    // If we have reached bottom
    if (i == n - 1)
        return (dp[i][j] = mat[i][j]);
      
    // Find the largest sum by considering all
    // possible next elements in sequence.
    let zzs = 0;
    for (let k = 0; k < n; k++)
        if (k != j)
            zzs = Math.max(zzs, largestZigZagSumRec(mat,
                                    i + 1, k, n));
      
    return (dp[i][j] = (zzs + mat[i][j]));
    }
     
    // Returns largest possible sum of a Zigzag sequence
// starting from top and ending at bottom.
    function largestZigZag(mat,n)
    {
        for (let i = 0; i < MAX; i++)
        {
            dp[i]=new Array(MAX);
            for (let k = 0; k < MAX; k++)
                dp[i][k] = -1;
         }
    // Consider all cells of top row as starting point
    let res = 0;
    for (let j = 0; j < n; j++)
        res = Math.max(res, largestZigZagSumRec(mat,
                                           0, j, n));
      
    return res;
    }
     
    // Driver code
    let n = 3;
    let mat=[[4, 2, 1],[3, 9, 6],[11, 3, 15]];
    document.write("Largest zigzag sum: " +
                        largestZigZag(mat, n));
     
     
    // This code is contributed by avanitrachhadiya2155
</script>
Producción

Largest zigzag sum: 28

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *