Veamos cómo podemos seleccionar la fila con el valor máximo y mínimo en el marco de datos de Pandas con la ayuda de diferentes ejemplos.
Considere este conjunto de datos.
# importing pandas and numpy import pandas as pd import numpy as np # data of 2018 drivers world championship dict1 ={'Driver':['Hamilton', 'Vettel', 'Raikkonen', 'Verstappen', 'Bottas', 'Ricciardo', 'Hulkenberg', 'Perez', 'Magnussen', 'Sainz', 'Alonso', 'Ocon', 'Leclerc', 'Grosjean', 'Gasly', 'Vandoorne', 'Ericsson', 'Stroll', 'Hartley', 'Sirotkin'], 'Points':[408, 320, 251, 249, 247, 170, 69, 62, 56, 53, 50, 49, 39, 37, 29, 12, 9, 6, 4, 1], 'Age':[33, 31, 39, 21, 29, 29, 31, 28, 26, 24, 37, 22, 21, 32, 22, 26, 28, 20, 29, 23]} # creating dataframe using DataFrame constructor df = pd.DataFrame(dict1) print(df.head(10))
Producción:
Usando max en Dataframe –
Código n.º 1: Muestra el máximo en las columnas Conductor, Puntos y Edad.
# importing pandas and numpy import pandas as pd import numpy as np # data of 2018 drivers world championship dict1 ={'Driver':['Hamilton', 'Vettel', 'Raikkonen', 'Verstappen', 'Bottas', 'Ricciardo', 'Hulkenberg', 'Perez', 'Magnussen', 'Sainz', 'Alonso', 'Ocon', 'Leclerc', 'Grosjean', 'Gasly', 'Vandoorne', 'Ericsson', 'Stroll', 'Hartley', 'Sirotkin'], 'Points':[408, 320, 251, 249, 247, 170, 69, 62, 56, 53, 50, 49, 39, 37, 29, 12, 9, 6, 4, 1], 'Age':[33, 31, 39, 21, 29, 29, 31, 28, 26, 24, 37, 22, 21, 32, 22, 26, 28, 20, 29, 23]} # creating dataframe using DataFrame constructor df = pd.DataFrame(dict1) # the result shows max on # Driver, Points, Age columns. print(df.max())
Salida:
Código #2: Quién anotó el máximo de puntos
# importing pandas and numpy import pandas as pd import numpy as np # data of 2018 drivers world championship dict1 ={'Driver':['Hamilton', 'Vettel', 'Raikkonen', 'Verstappen', 'Bottas', 'Ricciardo', 'Hulkenberg', 'Perez', 'Magnussen', 'Sainz', 'Alonso', 'Ocon', 'Leclerc', 'Grosjean', 'Gasly', 'Vandoorne', 'Ericsson', 'Stroll', 'Hartley', 'Sirotkin'], 'Points':[408, 320, 251, 249, 247, 170, 69, 62, 56, 53, 50, 49, 39, 37, 29, 12, 9, 6, 4, 1], 'Age':[33, 31, 39, 21, 29, 29, 31, 28, 26, 24, 37, 22, 21, 32, 22, 26, 28, 20, 29, 23]} # creating dataframe using DataFrame constructor df = pd.DataFrame(dict1) # Who scored more points ? print(df[df.Points == df.Points.max()])
Producción:
Código #3: ¿Cuál es la edad máxima?
# importing pandas and numpy import pandas as pd import numpy as np # data of 2018 drivers world championship dict1 ={'Driver':['Hamilton', 'Vettel', 'Raikkonen', 'Verstappen', 'Bottas', 'Ricciardo', 'Hulkenberg', 'Perez', 'Magnussen', 'Sainz', 'Alonso', 'Ocon', 'Leclerc', 'Grosjean', 'Gasly', 'Vandoorne', 'Ericsson', 'Stroll', 'Hartley', 'Sirotkin'], 'Points':[408, 320, 251, 249, 247, 170, 69, 62, 56, 53, 50, 49, 39, 37, 29, 12, 9, 6, 4, 1], 'Age':[33, 31, 39, 21, 29, 29, 31, 28, 26, 24, 37, 22, 21, 32, 22, 26, 28, 20, 29, 23]} # creating dataframe using DataFrame constructor df = pd.DataFrame(dict1) # what is the maximum age ? print(df.Age.max())
Producción:
Código n.º 4: qué fila tiene la edad máxima en el marco de datos | ¿Quién es el conductor más viejo?
# importing pandas and numpy import pandas as pd import numpy as np # data of 2018 drivers world championship dict1 ={'Driver':['Hamilton', 'Vettel', 'Raikkonen', 'Verstappen', 'Bottas', 'Ricciardo', 'Hulkenberg', 'Perez', 'Magnussen', 'Sainz', 'Alonso', 'Ocon', 'Leclerc', 'Grosjean', 'Gasly', 'Vandoorne', 'Ericsson', 'Stroll', 'Hartley', 'Sirotkin'], 'Points':[408, 320, 251, 249, 247, 170, 69, 62, 56, 53, 50, 49, 39, 37, 29, 12, 9, 6, 4, 1], 'Age':[33, 31, 39, 21, 29, 29, 31, 28, 26, 24, 37, 22, 21, 32, 22, 26, 28, 20, 29, 23]} # creating dataframe using DataFrame constructor df = pd.DataFrame(dict1) # Which row has maximum age | # who is the oldest driver ? print(df[df.Age == df.Age.max()])
Producción:
Usando min en Dataframe –
Código n.º 1: Muestra min en las columnas Conductor, Puntos, Edad.
# importing pandas and numpy import pandas as pd import numpy as np # data of 2018 drivers world championship dict1 ={'Driver':['Hamilton', 'Vettel', 'Raikkonen', 'Verstappen', 'Bottas', 'Ricciardo', 'Hulkenberg', 'Perez', 'Magnussen', 'Sainz', 'Alonso', 'Ocon', 'Leclerc', 'Grosjean', 'Gasly', 'Vandoorne', 'Ericsson', 'Stroll', 'Hartley', 'Sirotkin'], 'Points':[408, 320, 251, 249, 247, 170, 69, 62, 56, 53, 50, 49, 39, 37, 29, 12, 9, 6, 4, 1], 'Age':[33, 31, 39, 21, 29, 29, 31, 28, 26, 24, 37, 22, 21, 32, 22, 26, 28, 20, 29, 23]} # creating dataframe using DataFrame constructor df = pd.DataFrame(dict1) # the result shows min on # Driver, Points, Age columns. print(df.min())
Producción:
Código #2: Quién anotó menos puntos
# importing pandas and numpy import pandas as pd import numpy as np # data of 2018 drivers world championship dict1 ={'Driver':['Hamilton', 'Vettel', 'Raikkonen', 'Verstappen', 'Bottas', 'Ricciardo', 'Hulkenberg', 'Perez', 'Magnussen', 'Sainz', 'Alonso', 'Ocon', 'Leclerc', 'Grosjean', 'Gasly', 'Vandoorne', 'Ericsson', 'Stroll', 'Hartley', 'Sirotkin'], 'Points':[408, 320, 251, 249, 247, 170, 69, 62, 56, 53, 50, 49, 39, 37, 29, 12, 9, 6, 4, 1], 'Age':[33, 31, 39, 21, 29, 29, 31, 28, 26, 24, 37, 22, 21, 32, 22, 26, 28, 20, 29, 23]} # creating dataframe using DataFrame constructor df = pd.DataFrame(dict1) # Who scored less points ? print(df[df.Points == df.Points.min()])
Salida:
Código n.º 3: qué fila tiene una edad mínima en el marco de datos | quien es el conductor mas joven
# importing pandas and numpy import pandas as pd import numpy as np # data of 2018 drivers world championship dict1 ={'Driver':['Hamilton', 'Vettel', 'Raikkonen', 'Verstappen', 'Bottas', 'Ricciardo', 'Hulkenberg', 'Perez', 'Magnussen', 'Sainz', 'Alonso', 'Ocon', 'Leclerc', 'Grosjean', 'Gasly', 'Vandoorne', 'Ericsson', 'Stroll', 'Hartley', 'Sirotkin'], 'Points':[408, 320, 251, 249, 247, 170, 69, 62, 56, 53, 50, 49, 39, 37, 29, 12, 9, 6, 4, 1], 'Age':[33, 31, 39, 21, 29, 29, 31, 28, 26, 24, 37, 22, 21, 32, 22, 26, 28, 20, 29, 23]} # creating dataframe using DataFrame constructor df = pd.DataFrame(dict1) # Which row has maximum age | # who is the youngest driver ? print(df[df.Age == df.Age.min()])
Producción: